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NOTICE 
  

The United States Environmental Protection Agency (EPA) through its Office of Research and 

Development (ORD) funded and managed the research described in this ProUCL Technical Guide. It has 

been peer reviewed by the EPA and approved for publication. Mention of trade names or commercial 

products does not constitute endorsement or recommendation by the EPA for use. 

 

¶ ProUCL software was developed by Lockheed Martin, IS&GS - CIVIL under a contract with the 

EPA and is made available through the EPA Technical Support Center in Atlanta, Georgia. 

 

¶ Use of any portion of ProUCL that does not comply with the ProUCL Technical Guide is not 

recommended. 

 

¶ ProUCL contains embedded licensed software. Any modification of the ProUCL source code 

may violate the embedded licensed software agreements and is expressly forbidden.  

 

¶ ProUCL software provided by the EPA was scanned with McAfee VirusScan v4.5.1 SP1 and is 

certified free of viruses. 

 

With respect to ProUCL distributed software and documentation, neither the EPA nor any of their 

employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 

any information, apparatus, product, or process disclosed. Furthermore, software and documentation are 

supplied ñas-isò without guarantee or warranty, expressed or implied, including without limitation, any 

warranty of merchantability or fitness for a specific purpose. 
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Minimum Hardware Requirements 

ProUCL 5.0.00 will function but will run slowly and page a lot. 

¶ Intel Pentium 1.0 GHz 

¶ 45 MB of hard drive space 

¶ 512 MB of memory (RAM) 

¶ CD-ROM drive or internet connection 

¶ Windows XP (with SP3), Vista (with SP1 or later), and Windows 7. 

ProUCL 5.0.00 will function but some titles and some Graphical User Interfaces (GUIs) will need to be 

scrolled. Definition without color will be marginal. 

¶ 800 by 600 Pixels 

¶ Basic Color is preferred 

Preferred Hardware Requirements  

¶ 1 gigahertz (GHz) or faster Processor.  

¶ 1 gigabyte (GB) of memory (RAM) 

¶ 1024 by 768 Pixels or greater color display  

Software Requirements 

ProUCL 5.0.00 has been developed in the Microsoft .NET Framework 4.0 using the C# programming 

language. To properly run ProUCL 5.0.00 software, the computer using the program must have the .NET 

Framework 4.0 pre-installed. The downloadable .NET Framework 4.0 files can be obtained from one of 

the following websites: 

  

¶ http://msdn.microsoft.com/netframework/downloads/updates/default.aspx 

http://www.microsoft.com/en-us/download/details.aspx?id=17851   
Quicker site for 32 Bit Operating systems 

 

¶ http://www.microsoft.com/en-us/download/details.aspx?id=24872  

Use this site if you have a 64 Bit operating system 

  

   

 

http://msdn.microsoft.com/netframework/downloads/updates/default.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-us/download/details.aspx?id=24872
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Installation Instructions when Downloading from the EPA Web Site 

¶ Download the file SETUP.EXE from the EPA Web site and save to a temporary location.  

 

¶ Run the SETUP.EXE program. This will create a ProUCL directory and two folders:  

1) The USER GUIDE (this document), and 2) DATA (example data sets). 

 

¶ To run the program, use Windows Explorer to locate the ProUCL application file, and  

Double click on it, or use the RUN command from the start menu to locate the 

ProUCL.exe file, and run ProUCL.exe. 

 

¶ To uninstall the program, use Windows Explorer to locate and delete the ProUCL folder. 

 
Caution: If you have previous versions of the ProUCL, which were installed on your computer, you 

should remove or rename the directory in which earlier ProUCL versions are currently located. 

 
Installation Instructions when Copying from a CD  
 

¶ Create a folder named ProUCL 5.0 on a local hard drive of the machine you wish to 

install ProUCL 5.0.   

 

¶ Extract the zipped file ProUCL.zip to the folder you have just created.   

 

¶ Run ProUCL.exe.   

 
Note:  If you have extension turned off, the program will show with the name ProUCL  in your directory 

and have an Icon with the label ProUCL . 

Creating a Shortcut for ProUCL 5.0 on Desktop 

¶ To create a shortcut of the ProUCL program on your desktop, go to your ProUCL 

directory and right click on the executable program and send it to desktop. A ProUCL 

icon will be displayed on your desktop. This shortcut will point to the ProUCL directory 

consisting of all files required to execute ProUCL 5.0.   

Caution: It should be noted that since all files in your ProUCL directory are needed to execute the 

ProUCL software, one needs you generate a shortcut using the process described above. Specifically, 

simply dragging the ProUCL executable file from Window Explorer onto your desktop will not work 

successfully (an error message will appear) as all files needed to run the software are not available on 

your desktop. Your shortcut should point to the directory path with all required ProUCL files. 
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ProUCL 5.0.00 
 
Software ProUCL version 5.0.00 (ProUCL 5.0), its earlier versions: ProUCL version 3.00.01, 4.00.02, 

4.00.04, 4.00.05, 4.1.00, and 4.1.01, associated Facts Sheet, User Guides and Technical Guides (e.g., EPA 

2010a, 2010b) can be downloaded from the following EPA website:  

 

http://www.epa.gov/osp/hstl/tsc/software.htm 

http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm 

 

Material for a couple of ProUCL webinars offered in March 2011, and relevant literature used in the 

development of ProUCL 5.0 can also be downloaded from the above EPA website. 

 

Contact Information for all Versions of ProUCL  

The ProUCL software is developed under the direction of the Technical Support Center (TSC).  As of 

November 2007, the direction of the TSC is transferred from Brian Schumacher to Felicia Barnett.  

Therefore, any comments or questions concerning all versions of ProUCL should be addressed to: 

Felicia Barnett, Director 

ORD Site Characterization and Monitoring Technical Support Center (SCMTSC) 

Superfund and Technology Liaison, Region 4 

U.S. Environmental Protection Agency 

 61 Forsyth Street SW, Atlanta, GA 30303-8960 

barnett.felicia@epa.gov 

(404)562-8659 

Fax: (404) 562-8439 

 

 

http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
mailto:barnett.felicia@epa.gov
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EXECUTIVE SUMMARY 
 

The main objective of the ProUCL software funded by the USEPA is to compute rigorous statistics to 

help decision makers and project teams in making correct decisions at a polluted site which are cost-

effective, and protective of human health and the environment. The ProUCL software is based upon the 

philosophy that rigorous statistical methods can be used to compute correct estimates of population 

parameters and decision making statistics including: the upper confidence limit (UCL) of the mean, the 

upper tolerance limit (UTL), and the upper prediction limit (UPL) to help decision makers and project 

teams in making correct decisions. A few commonly used text book type methods (e.g., CLT, Student's t-

UCL) alone cannot address all scenarios and situations occurring in the various environmental studies. 

Since many environmental decisions are based upon a 95% UCL (UCL95) of the population mean, it is 

important to compute correct UCLs of practical merit. The use and applicability of a statistical method 

(e.g., student's t-UCL, Central Limit Theorem (CLT)-UCL, adjusted gamma-UCL, Chebyshev UCL, 

bootstrap-t UCL) depend upon data size, data skewness, and data distribution. ProUCL computes decision 

statistics using several parametric and nonparametric methods covering a wide-range of data variability, 

distribution, skewness, and sample size. It is anticipated that the availability of the statistical methods in 

the ProUCL software covering a wide range of environmental data sets will help the decision makers in 

making more informative and correct decisions at the various Superfund and RCRA sites. 

 

It is noted that for moderately skewed to highly skewed environmental data sets, UCLs based on the CLT 

and the Student's t-statistic fail to provide the desired coverage (e.g., 0.95) to the population mean even 

when the sample sizes are as large as 100 or more. The sample size requirements associated with the CLT 

increases with skewness. It will be naive and incorrect to state that a CLT or Student's statistic based 

UCLs are adequate to estimate EPC terms based upon skewed data sets.  These facts have been described 

in the published documents summarizing simulation experiments conducted on positively skewed data 

sets to evaluate the performances of the various UCL computation methods. The use of a parametric 

lognormal distribution on a lognormally distributed data set yields unstable impractically large UCLs 

values, especially when the standard deviation (sd) of the log-transformed data becomes greater than 1.0 

and the data set is of small size less than 30-50. Many environmental data sets can be modeled by a 

gamma as well as a lognormal distribution. The use of a gamma distribution on gamma distributed data 

sets tends to yield UCL values of practical merit. Therefore, the use of gamma distribution based decision 

statistics such as UCLs, UPLs, and UTLs cannot be dismissed by stating that it is easier (than a gamma 

model) to use a lognormal model to compute these upper limits.  

 

The suggestions made in ProUCL are based upon the extensive experience of the developers in 

environmental statistical methods, published environmental literature, and procedures described in 

various EPA guidance documents. The inclusion of outliers in the computation of the various decision 

statistics tends to yield inflated values of those decision statistics, which can lead to incorrect decisions. 

Often inflated statistics computed using a few outliers tend to represent those outliers rather than 

representing the main dominant population of interest (e.g., reference area).  It is suggested to identify 

outliers, observations coming from population(s) other than the main dominant population, before 

computing the decision statistics needed to address project objectives. The project team may want to 

perform the statistical evaluations twice, once with outliers and once without outliers. This exercise will 

help the project team in computing correct and defensible decision statistics needed to make cleanup and 

remediation decisions at polluted sites.  

 

The initial development during 1999-2000 and all subsequent upgrades and enhancements of the ProUCL 

software have been funded by USEPA through its Office of Research and Development (ORD).  Initially 
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ProUCL was developed as a research tool for USEPA scientists and researchers of the Technical Support 

Center and ORD-NERL, EPA Las Vegas. Background evaluations, groundwater monitoring, exposure 

and risk management and cleanup decisions in support of the Comprehensive Environmental Recovery, 

Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) site 

projects of USEPA are often derived based upon the various test statistics (e.g., Shapiro-Wilk test, t-test, 

Wilcoxon-Mann-Whitney (WMW) test, analysis of variance [ANOVA], Mann-Kendall [MK]  test) and 

decision statistics including UCLs of mean, UPLs, and UTLs. To address the statistical needs of the 

environmental projects of the USEPA, over the years ProUCL software has been upgraded and enhanced 

to include many graphical tools and statistical methods described in the various EPA guidance documents 

including: EPA 1989a, 1989b, 1991, 1992a, 1992b, 2000 (MARSSIM), 2002a, 2002b, 2002c, 2006a, 

2006b, and 2009. Several statistically rigorous methods (e.g., for data sets with NDs) not easily available 

in the existing guidance documents and in the environmental literature are also available in ProUCL 

version 5.0.00 (ProUCL 5.0). 

ProUCL 5.0 has graphical, estimation, and hypotheses testing methods for uncensored-full data sets and 

for left-censored data sets consisting of NDs observations with multiple detection limits (DLs) or 

reporting limits (RLs). In addition to computing general statistics, ProUCL 5.0 has goodness-of-fit (GOF) 

tests for normal, lognormal and gamma distributions, parametric and nonparametric methods including 

bootstrap methods for skewed data sets to compute various decision making statistics such as UCLs of 

mean (EPA 2002a), percentiles, UPLs for a certain number of future observations (e.g., k with k=1, 2, 

3,...), UPLs for mean of future k (Ó1) observations, and UTLs (e.g., EPA 1992b, 2002b, and 2009). Many 

positively skewed environmental data sets can be modeled by a lognormal as well as a gamma model. It is 

well-known that for moderately skewed to highly skewed data sets, the use of a lognormal distribution 

tends to yield inflated and unrealistically large values of the decision statistics especially when the sample 

size is small (e.g., <20-30).  For gamma distributed skewed uncensored and left-censored data sets, 

ProUCL software computes decision statistics including UCLs, percentiles, UPLs for future k (Ó1) 

observations, UTLs, and upper simultaneous limits (USLs).    

For data sets with NDs, ProUCL has several estimation methods including the Kaplan-Meier (KM) 

method, regression on order statistics (ROS) methods and substitution methods (e.g., replacing NDs by 

DL, DL/2).  ProUCL 5.0 can be used to compute upper limits which adjust for data skewness; 

specifically, for skewed data sets, ProUCL 5.0 computes upper limits using KM estimates in gamma 

(lognormal) UCL and UTL equations provided the detected observations in the left-censored data set 

follow a gamma (lognormal) distribution. Some poor performing commonly used and cited methods such 

as the DL/2 substitution method and H-statistic based UCL computation method have been incorporated 

in ProUCL for historical reasons, and research and comparison purposes. 

The Sample Sizes module of ProUCL can be used to develop data quality objectives (DQOs) based 

sampling designs and to perform power evaluations needed to address statistical issues associated with the 

various polluted sites projects. ProUCL provides user friendly options to enter the desired values for the 

decision parameters such as Type I and Type II error rates, and other DQOs used to determine the 

minimum sample sizes needed to address project objectives. The Sample Sizes module can compute 

DQOs based minimum sample sizes needed: to estimate the population mean; to perform single and two-

sample hypotheses testing approaches; and in acceptance sampling to accept or reject a batch of discrete 

items such as a lot of drums consisting of hazardous waste. Both parametric (e.g., t-test) and 

nonparametric (e.g., Sign test, WMW test, test for proportions) sample size determination methods are 

available in ProUCL.  

ProUCL has exploratory graphical methods for both uncensored data sets and for left-censored data sets 

consisting of ND observations. Graphical methods in ProUCL include histograms, multiple quantile-

quantile (Q-Q) plots, and side-by-side box plots. The use of graphical displays provides additional insight 
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about the information contained in a data set that may not otherwise be revealed by the use of estimates 

(e.g., 95% upper limits) and test statistics (e.g., two-sample t-test, WMW test).  In addition to providing 

information about the data distributions (e.g., normal or gamma), Q-Q plots are also useful in identifying 

outliers and the presence of mixture populations (e.g., data from several populations) potentially present 

in a data set. Side-by-side box plots and multiple Q-Q plots are useful to visually compare two or more 

data sets, such as: site-versus-background constituent concentrations, surface-versus-subsurface 

concentrations, and constituent concentrations of several groundwater monitoring wells (MWs). ProUCL 

also has a couple of classical outlier test procedures, such as the Dixon test and the Rosner test which can 

be used on uncensored data sets as well as on left-censored data sets consisting of ND observations. 

ProUCL has parametric and nonparametric single-sample and two-sample hypotheses testing approaches 

for uncensored as well as left-censored data sets.  Single-sample hypotheses tests: Studentôs t-test, Sign 

test, Wilcoxon Signed Rank test, and the Proportion test are used to compare site mean/median 

concentrations (or some other threshold such as an upper percentile) with some average cleanup standard, 

Cs (or a not-to-exceed compliance limit, A0) to verify the attainment of cleanup levels (EPA, 1989a; 

MARSSIM, 2000; EPA 2006a) at remediated site areas of concern.  Single-sample tests such as the Sign 

test and Proportion test, and upper limits including UTLs and UPLs are also used to perform intra-well 

comparisons. Several two-sample hypotheses tests as described in EPA guidance documents (e.g., EPA 

2002b, 2006b, 2009) are also available in the ProUCL software. The two-sample hypotheses testing 

approaches in ProUCL include: Studentôs t-test, WMW test, Gehan test and Tarone-Ware test. The two-

sample tests are used to compare concentrations of two populations such as site versus background, 

surface versus subsurface soils, and upgradient versus downgradient wells.  

The Oneway Analysis of Variance (ANOVA) module in ProUCL has both classical and nonparametric 

Kruskal-Wallis (K-W) tests. Oneway ANOVA is used to compare means (or medians) of multiple groups 

such as comparing mean concentrations of several areas of concern and to perform inter-well 

comparisons.  In groundwater (GW) monitoring applications, the ordinary least squares (OLS) of 

regression, trend tests, and time series plots are used to identify upwards or downwards trends potentially 

present in constituent concentrations identified in GW monitoring wells over a certain period of time. The 

Trend Analysis module performs Mann-Kendall trend test and Theil-Sen trend test on data sets with 

missing values; and generates trend graphs displaying a parametric OLS regression line and 

nonparametric Theil-Sen trend line. The Time Series Plots option can be used to compare multiple time-

series data sets.  

 

The use of the incremental sampling methodology (ISM) has been recommended (ITRC, 2012) to collect 

ISM soil samples needed to compute mean concentrations of the decision units (DUs) and sampling units 

(SUs) requiring characterization and remediation activities.  At many polluted sites, a large amount of 

discrete onsite and/or offsite background data are already available which cannot be directly compared 

with newly collected ISM data. In order to provide a tool to compare the existing discrete background 

data with actual field onsite or background ISM data, a Monte Carlo Background Incremental Sample 

Simulator (BISS) module has been incorporated in ProUCL 5.0 (currently blocked from general use) 

which may be used on a large existing discrete background data set. The BISS module simulates 

incremental sampling methodology based equivalent background incremental samples. The availability of 

a large discrete background data set collected from areas with geological conditions comparable to the 

DU(s) of interest is a pre-requisite for successful application of this module. The BISS module has been 

temporarily blocked for use in ProUCL 5.0 as this module is awaiting adequate guidance and instructions 

for its intended use on discrete background data sets.   

 

ProUCL 5.0 is a user friendly freeware package providing statistical and graphical tools needed to address 

statistical issues described in the various EPA guidance documents. ProUCL 5.0 can process many 
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constituents (variables) simultaneously to: perform various tests (e.g., ANOVA and trend test statistics) 

and compute decision statistics including UCLs of mean, UPLs, and UTLs ï a capability not available in 

several commercial software packages such as Minitab 16 and NADA for R (Helsel, 2013). ProUCL 5.0 

also has the capability of processing data by group variables.  ProUCL 5.0 is easy to use and it does not 

require any programming skills as needed when using other software packages such as Minitab, SAS, and 

programs written in R script. 

Methods incorporated in ProUCL 5.0 have been tested and verified extensively by the developers and the 

various researchers, scientists, and users.  The results obtained by ProUCL are in agreement with the 

results obtained by using other software packages including Minitab, SAS, and programs written in R 

Script. ProUCL 5.0 computes decision statistics (e.g., UPL, UTL) based upon the KM method in a 

straight forward manner without flipping the data and re-flipping the computed statistics for left-censored 

data sets; these operations are not easy for a typical user to understand and perform. This can 

unnecessarily become tedious when computing decision statistics for multiple variables/analytes. 

Moreover, unlike survival analysis, it is important to compute an accurate estimate of the sd which is 

needed to compute decision making statistics including UPLs and UTLs. For left-censored data sets, 

ProUCL computes a KM estimate of sd directly. These issues are elaborated by examples discussed in 

this Technical Guide and in the accompanying ProUCL 5.0 User Guide. 
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ACRONYMS and ABBREVIATIONS  

 
ACL alternative compliance or concentration limit 

A-D, AD Anderson-Darling test 

AL Action limit 

AM arithmetic mean  

AOC area(s) of concern 

ANOVA analysis of variance 

A0 not to exceed compliance limit or specified action level 

BC Box-Cox transformation 

BCA bias-corrected accelerated bootstrap method  

BD Binomial distribution 

BISS 

 

BTV 

Background Incremental Sample Simulator 

 

background threshold value  

 

CC, cc 

 

confidence coefficient 

  

CDF, cdf cumulative distribution function 

CERCLA Comprehensive Environmental Recovery, Compensation, and Liability Act 

CL compliance limit 

CLT central limit theorem  

COC contaminant/constituent of concern 

COPC contaminant/constituent of potential concern  

Cs cleanup standards 

CSM conceptual site model 

CV coefficient of variation 

Df degrees of freedom 

DL detection limit  

DL/2 (t) UCL based upon DL/2 method using Studentôs t-distribution cutoff value 

DL/2 Estimates estimates based upon data set with NDs replaced by 1/2 of the respective detection 

limits 

DOE Department of Energy 

DQOs data quality objectives  

DU decision unit 
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EA exposure area 

EDF empirical distribution function  

EM expectation maximization  

EPA United States Environmental Protection Agency  

EPC exposure point concentration  

EU exposure units 

GB Gigabyte 

GHz Gigahertz 

GROS gamma ROS 

GOF, G.O.F. goodness-of-fit  

GUI graphical user interface 

GW Groundwater 

HA alternative hypothesis 

H0 null hypothesis 

H-UCL 

 

i.i.d.  

UCL based upon Landôs H-statistic 

 

independently and identically distributed 

 

ISM incremental sampling methodology 

ITRC Interstate Technology & Regulatory Council 

k, K a positive integer representing future or next k observations  

K shape parameter of a gamma distribution  

K number of nondetects in a data set 

k hat MLE of the shape parameter of a gamma distribution 

k star biased corrected MLE of the shape parameter of a gamma distribution 

KM (%) UCL based upon Kaplan-Meier estimates using the percentile bootstrap method 

KM (Chebyshev) UCL based upon Kaplan-Meier estimates using the Chebyshev inequality 

KM (t) UCL based upon Kaplan-Meier estimates using the Studentôs t-distribution critical  

value 

KM (z) UCL based upon Kaplan-Meier estimates using critical value of a standard normal 

distribution  

K-M, KM Kaplan-Meier 

K-S, KS  Kolmogorov-Smirnov  

K-W Kruskal Wallis 

LCL lower confidence limit  
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LN, ln lognormal distribution 

Log 
 
LCL 

refers to log base e, natural logarithm 
 
lower confidence limit of mean 

 
LPL 

 
lower prediction limit 
 

LROS logROS; robust ROS 
 

LTL 
 
LSL 
 
M,m 

lower tolerance limit 
 
lower simultaneous limit 
 
applied to incremental sampling:  number in increments in an ISM sample 
 

MAD  median absolute deviation 

MARSSIM Multi -Agency Radiation Survey and Site Investigation Manual 

MCL maximum concentration limit, maximum compliance limit 

MD Mahalanobis distance 

MDC minimum detectable concentration 

MDD minimum detectable difference  

MDL method detection limit 

MK, M-K Mann-Kendall 

ML maximum likelihood  

MLE maximum likelihood estimate 

MLE (t) UCL based upon  ML estimates using Studentôs t-distribution critical value 

MS mean sum of squares 

MSE mean sum of squares error 

MSR mean sum of squares regression 

MV minimum variance 

n number of observations/measurements in a sample 

N number of observations/measurements in a population 

MVUE minimum variance unbiased estimate  

MW monitoring well 

ND, nd, Nd nondetect  

NERL 

 

NRC 

National Exposure Research Laboratory 

 

Nuclear Regulatory Commission 

 

OKG Orthogonalized Kettenring Gnanadesikan  
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OLS ordinary least squares  

ORD Office of Research and Development 

OU operating unit 

PCA principal component analysis 

PDF, pdf probability density function  

pdf files in pdf format 

PLE product limit estimate 

PRG preliminary remediation goals 

PROP  proposed influence function 

QA quality assurance 

QC quality  

Q-Q quantile-quantile  

r applied to incremental sampling: number of replicates of ISM samples 

RAGS Risk Assessment Guidance for Superfund 

RCRA Resource Conservation and Recovery Act 

RL reporting limit 

RMLE restricted maximum likelihood estimate 

ROS regression on order statistics  

RPM Remedial Project Manager 

RSD relative standard deviation 

RV random variable 

S substantial difference  

SCMTSC Site Characterization and Monitoring Technical Support Center 

SD, Sd, sd standard deviation 

SE standard error  

SND standard normal deviate 

SNV standard normal variate 

 Sp pooled standard deviation 

SSE sum of squares error 

SSL soil screening levels 

SST sum of squares total 

SSR sum of squares regression 
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SQL sample quantitation limit 

SU sampling unit 

S-W, SW Shapiro-Wilk  

T-S Theil-Sen 

TSC Technical Support Center 

TW, T-W Tarone-Ware 

UCL upper confidence limit 

UCL95  95% upper confidence limit 

UPL upper prediction limit 

U.S. EPA, USEPA  United States Environmental Protection Agency  

UTL upper tolerance limit 

UTL95-95 95% upper tolerance limit with 95% coverage 

USGS U.S. Geological Survey 

USL upper simultaneous limit 

WMW Wilcoxon-Mann-Whitney 

WRS Wilcoxon Rank Sum  

WSR Wilcoxon Signed Rank 

Xp p
th 

 percentile of a distribution 

< less than 

> greater than 

Ó greater than or equal to 

Ò less than or equal to 

ȹ Greek letter denoting the width of the gray region associated with hypothesis testing 

Ɇ Greek letter representing the summation of several mathematical quantities, numbers 

% Percent 

Ŭ Type I error rate 

ɓ Type II error rate 

ᴆ scale parameter of the gamma distribution 

ů standard deviation of the log-transformed data 

^ carat sign over a parameter, indicates that it represents a statistic/estimate computed 

using the sampled data 
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GLOSSARY 
 

Anderson-Darling (A-D) test: The Anderson-Darling test assesses whether known data come from a 

specified distribution. In ProUCL the A-D test is used to test the null hypothesis that a sample data set, x1, 

..., xn came from a gamma distributed population. 

 

Background Measurements:  Measurements that are not site-related or impacted by site activities. 

Background sources can be naturally occurring or anthropogenic (man-made).  

 

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur 

during sampling design, the sampling process, or laboratory analysis). 

 

Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of 

accuracy to sample estimates. This technique allows estimation of the sample distribution of almost any 

statistic using only very simple methods. Bootstrap methods are generally superior to ANOVA for small 

data sets or where sample distributions are non-normal. 

 

Central Limit Theorem (CLT): The central limit theorem states that given a distribution with a mean, ɛ, 

and variance, ů
2
, the sampling distribution of the mean approaches a normal distribution with a mean (ɛ) 

and a variance ů
2
/N as N, the sample size, increases. 

 

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to 

the size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. It is also 

known as the relative standard deviation (RSD). 

 

Confidence Coefficient (CC): The confidence coefficient (a number in the closed interval [0, 1]) 

associated with a confidence interval for a population parameter is the probability that the random interval 

constructed from a random sample (data set) contains the true value of the parameter. The confidence 

coefficient is related to the significance level of an associated hypothesis test by the equality: level of 

significance = 1 ï confidence coefficient. 

 

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random 

interval within which the unknown population parameter, such as the mean, or a future observation, x0, 

falls. 

 

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95% upper 

confidence limit (UCL) is given by the upper bound of the associated confidence interval. 

 

Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit 

(UCL) of the population mean represents the confidence coefficient associated with the UCL. 

 

Critical Value:  The critical value for a hypothesis test is a threshold to which the value of the test 

statistic is compared to determine whether or not the null hypothesis is rejected. The critical value for any 

hypothesis test depends on the sample size, the significance level, Ŭ at which the test is carried out, and 

whether the test is one-sided or two-sided. 

 

Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO 

process that clarify study technical and quality objectives, define the appropriate type of data, and specify 



 xvii  

tolerable levels of potential decision errors that will be used as the basis for establishing the quality and 

quantity of data needed to support decisions. 

 

Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not 

contain a specific analyte from samples that contain low concentrations of the analyte. It is the lowest 

concentration or amount of the target analyte that can be determined to be different from zero by a single 

measurement at a stated level of probability. Detection limits are analyte and matrix-specific and may be 

laboratory-dependent. 

 

Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative 

probability distribution function that concentrates probability 1/n at each of the n numbers in a sample. 

 

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate) 

the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of 

the unknown population mean. 

 

Expectation Maximization (EM): The EM algorithm is used to approximate a probability function 

(PDF). EM is typically used to compute maximum likelihood estimates given incomplete samples. 

 

Exposure Point Concentration (EPC): The constituent concentration within an exposure unit to which 

the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure 

assessment. 

 

Extreme Values:  Values that are well-separated from the majority of the data set coming from the 

far/extreme tails of the data distribution. 

 

Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set 

wholly or partly derived from a model of the data. 

 

Gray Region: A range of values of the population parameter of interest (such as mean constituent 

concentration) within which the consequences of making a decision error are relatively minor. The gray 

region is bounded on one side by the action level. The width of the gray region is denoted by the Greek 

letter delta, ȹ, in this guidance. 

 

H-Statistic: Land's statistic used to compute UCL of mean of a lognormal population 

 

H-UCL: UCL based on Landôs H-Statistic. 

 

Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or 

rejected by examining the data set collected for this purpose. There are two hypotheses: a null hypothesis, 

(H0), representing a testable presumption (often set up to be rejected based upon the sampled data), and an 

alternative hypothesis (HA), representing the logical opposite of the null hypothesis. 

 

Jackknife Method: A statistical procedure in which, in its simplest form, estimates are formed of a 

parameter based on a set of N observations by deleting each observation in turn to obtain, in addition to 

the usual estimate based on N observations, N estimates each based on N-1 observations. 

 

Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a data set comes 

from a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical 



 xviii  

distribution function (EDF). ProUCL uses the KS test to test the null hypothesis if a data set follows a 

gamma distribution. 

 

Left -censored Data Set:  An observation is left-censored when it is below a certain value (detection limit) 

but it is unknown by how much; left-censored observations are also called nondetect (ND) observations. 

A data set consisting of left-censored observations is called a left-censored data set. In environmental 

applications trace concentrations of chemicals may indeed be present in an environmental sample (e.g., 

groundwater, soil, sediment) but cannot be detected and are reported as less than the detection limit of the 

analytical instrument or laboratory method used.  

 

Level of Significance (Ŭ): The error probability (also known as false positive error rate) tolerated of 

falsely rejecting the null hypothesis and accepting the alternative hypothesis. 

 

Lilliefors test: A goodness-of-fit test that tests for normality of large data sets when population  mean 

and variance are unknown. 

 

Maximum Likelihood Estimates (MLE): MLE is a popular statistical method used to make inferences 

about parameters of the underlying probability distribution of a given data set. 

 

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a 

measure of central tendency. 

 

Median: The middle value for an ordered set of n values. It is represented by the central value when n is 

odd or by the average of the two most central values when n is even. The median is the 50th percentile. 

 

Minimum Detectable Difference (MDD): The MDD is the smallest difference in means that the 

statistical test can resolve. The MDD depends on sample-to-sample variability, the number of samples, 

and the power of the statistical test. 

 

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or 

MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the 

parameters. If an estimator is unbiased, then its mean squared error is equal to its variance. 

 

Nondetect (ND) values: Censored data values. 

 

Nonparametric: A term describing statistical methods that do not assume a particular population 

probability distribution, and are therefore valid for data from any population with any probability 

distribution, which can remain unknown. 

 

Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature. 

This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the 

population mean. For example, for normally distributed data sets, the UCL of the population mean based 

upon Studentôs t distribution is optimum. 

 

Outlier: Measurements (usually larger or smaller than the majority of the data values in a sample) that 

are not representative of the population from which they were drawn. The presence of outliers distorts 

most statistics if used in any calculations. 
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p-value: In statistical hypothesis testing, the p-value associated with  an observed value,  tobserved of some 

random variable T used as a test statistic is the probability that, given that the null hypothesis is true, T 

will assume a value as or more unfavorable to the null hypothesis as the observed value tobserved. The null 

hypothesis is rejected for all levels of significance, Ŭ greater than or equal to the p-value. 

 

Parameter: A parameter is an unknown or known constant associated with the distribution used to model 

the population. 

 

Parametric: A term describing statistical methods that assume a probability distribution such as a 

normal, lognormal, or a gamma distribution. 

 

Population: The total collection of N objects, media, or people to be studied and from which a sample is 

to be drawn. It is the totality of items or units under consideration. 

 

Prediction Interval: The interval (based upon historical data, background data) within which a newly 

and independently obtained (often labeled as a future observation) site observation (e.g., onsite, 

compliance well) of the predicted variable (e.g., lead) falls with a given probability (or confidence 

coefficient). 

 

Probability of Type II (2)  Error (=ɓ): The probability, referred to as ɓ (beta), that the null hypothesis 

will not be rejected when in fact it is false (false negative). 

 

Probability of Type I  (1) Error = Level of Significance (= Ŭ): The probability, referred to as Ŭ (alpha), 

that the null hypothesis will be rejected when in fact it is true (false positive).  

 

p
th
 Percentile or p

th
 Quantile: The specific value, Xp of a distribution that partitions a data set of 

measurements in such a way that the p percent (a number between 0 and 100) of the measurements fall at 

or below this value, and (100-p) percent of the measurements exceed this value, Xp. 

 

Quality Assurance (QA): An integrated system of management activities involving planning, 

implementation, assessment, reporting, and quality improvement to ensure that a process, item, or service 

is of the type and quality needed and expected by the client. 

 

Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary 

QA, quality control (QC), and other technical activities that must be implemented to ensure that the 

results of the work performed will satisfy the stated performance criteria. 

 

Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the 

highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to 

plot the percentiles/quantiles of the distribution.  

 

Range: The numerical difference between the minimum and maximum of a set of values. 

 

Regression on Order Statistics (ROS): A regression line is fit to the normal scores of the order statistics 

for the uncensored observations and then to fill in values imputed from the straight line for the 

observations below the detection limit. 

 

Resampling: The repeated process of obtaining representative samples and/or measurements of a 

population of interest. 
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Reliable UCL: This is similar to a stable UCL. 

 

Robustness: Robustness is used to compare statistical tests. A robust test is the one with good 

performance (that is not unduly affected by outliers and underlying assumptions) for a wide variety of 

data distributions. 

 

Resistant Estimate:  A test/estimate which is not affected by outliers is called a resistant test/estimate 

 

Sample: A sample here represents a random sample (data set) obtained from the population of interest 

(e.g., a site area, a reference area, or a monitoring well). The sample is supposed to be a representative 

sample of the population under study. The sample is used to draw inferences about the population 

parameter(s). 

 

Shapiro-Wilk (SW) test: Shapiro-Wilk test is a goodness-of-fit test that tests the null hypothesis that a 

sample data set, x1, ..., xn came from a normally distributed population. 

 

Skewness: A measure of asymmetry of the distribution of the characteristic under study (e.g., lead 

concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The 

greater is the standard deviation, the greater is the skewness. 

 

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merits, 

which also has some physical meaning. That is, a stable UCL represents a realistic number (e.g., 

constituent concentration) that can occur in practice. Also, a stable UCL provides the specified (at least 

approximately, as much as possible, as close as possible to the specified value) coverage (e.g., ~0.95) to 

the population mean. 

 

Standard Deviation (sd, sd, SD): A measure of variation (or spread) from an average value of the 

sample data values. 

 

Standard Error (SE): A measure of an estimate's variability (or precision). The greater is the standard 

error in relation to the size of the estimate, the less reliable is the estimate. Standard errors are needed to 

construct confidence intervals for the parameters of interests such as the population mean and population 

percentiles.  

 

Uncensored Data Set: A data set without any censored observations is called an uncensored data set. 

 

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable, 

unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of population mean. It 

represents an impractically large value that cannot be achieved in practice. For example, the use of Landôs 

H-statistic often results in an impractically large inflated UCL value. Some other UCLs, such as the 

bootstrap-t UCL and Hallôs UCL, can be inflated by outliers resulting in an impractically large and 

unstable value. All such impractically large UCL values are called unstable, unrealistic, unreliable, or 

inflated UCLs. 

 

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter 

of interest such as the population mean. 

 

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently 

obtained observation (or an independent future observation). 
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Upper Tolerance Limit (UTL) : A confidence limit on a percentile of the population rather than a 

confidence limit on the mean. For example, a 95 % one-sided UTL for 95 % coverage represents the 

value below which 95 % of the population values are expected to fall with 95 % confidence. In other 

words, a 95% UTL with coverage coefficient 95% represents a 95% UCL for the 95
th
 percentile. 

 

Upper Simultaneous Limit (USL): The upper boundary of the largest value. 

 

xBar: arithmetic average of computed using the sampled data values 
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INTRODUCTION 
 

OVERVIEW OF ProUCL VERSION 5.0.00 SOFTWARE 
 

 

The main objective of the ProUCL software funded by the USEPA is to compute rigorous decision 

statistics to help the decision makers in making correct decisions which are cost-effective, and protective 

of human health and the environment. The ProUCL software is based upon the philosophy that rigorous 

statistical methods can be used to compute the correct estimates of population parameters (e.g., site mean, 

background percentiles) and decision making statistics including the upper confidence limit of (UCL) the 

mean, the upper tolerance limit (UTL), and the upper prediction limit (UPL) to help the decision makers 

and project teams in making correct decisions. The use and applicability of a statistical method (e.g., 

student's t-UCL, Central Limit Theorem (CLT)-UCL, adjusted gamma-UCL, Chebyshev UCL, bootstrap-

t UCL) depend upon data size, data variability, data skewness, and data distribution. ProUCL computes 

decision statistics using several parametric and nonparametric methods covering a wide-range of data 

variability, skewness, and sample size. A couple of text book methods described in most of the statistical 

text books (e.g., Hogg and Craig, 1995) based upon the Student's t-statistic and the CLT alone cannot 

address all scenarios and situations commonly occurring in the various environmental studies. It is naive 

and incorrect to state or assume that Student's t-statistic and/or CLT based UCLs of mean will provide the 

desired coverage (e.g., 0.95) to the population mean irrespective of the skewness of the data 

set/population under consideration. These issues have been discussed in detail in Chapters 2 and 4 of this 

Technical guide. Several examples have been discussed throughout this guidance document and also in 

the accompanying ProUCL 5.0 User Guide to elaborate on these issues. 

 

The use of a parametric lognormal distribution on a lognormally distributed data set tends to yield 

unstable impractically large UCLs values, especially when the standard deviation of the log-transformed 

data is greater than 1.0 and the data set is of small size such as less than 30-50 (Hardin and Gilbert, 1993; 

Singh, Singh, and Engelhardt, 1997). Many environmental data sets can be modeled by a gamma as well 

as a lognormal distribution. Generally, the use of a gamma distribution on gamma distributed data sets 

yields UCL values of practical merit (Singh, Singh, and Iaci, 2002). Therefore, the use of gamma 

distribution based decision statistics such as UCLs, UPL, and UTLs cannot be dismissed just because it is 

easier to use a lognormal model to compute these upper limits or incorrectly assuming that the two 

distributions behave in a similar manner. The advantages of computing the gamma distribution based 

decision statistics are discussed in Chapters 2-5 of this guidance document. 

 

Since many environmental decisions are made based upon a 95% UCL of the population mean, it is 

important to compute correct UCLs and other decision making statistics of practical merit.  In an effort to 

compute correct UCLs of the population mean and other decision making statistics, in addition to 

computing the Student's t statistic and the CLT based  statistics (e.g., UCLs, UPLs), significant effort has 

been made to incorporate rigorous statistical methods based UCLs (and other limits) in the ProUCL 

software covering a wide-range of data skewness and sample sizes (e.g., Singh, Singh, and Engelhardt, 

1997; Singh, Singh, and Iaci, 2002; and Singh, Singh, 2003). It is anticipated that the availability of the 

statistical methods in the ProUCL software covering a wide range of environmental data sets will help the 

decision makers in making more informative and correct decisions at the various polluted sites. 

 

It is noted that even for skewed data sets, practitioners tend to use the CLT or Student's t-statistic based 

UCLs of mean based upon samples of sizes 25-30 (large sample rule-of-thumb to use CLT). However, 
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this rule-of-thumb does not apply to moderately skewed to highly skewed data sets, specifically when ů 

(standard deviation of the log-transformed data) starts exceeding 1. The large sample requirement 

associated with the use of the CLT depends upon the skewness of the data distribution under 

consideration. The large sample requirement for the sample mean to follow an approximate normal 

distribution increases with the data skewness; and for skewed data sets, even samples of size greater than 

(>)100 may not be large enough for the sample mean to follow an approximate normal distribution.  For 

moderately skewed to highly skewed environmental data sets, as expected,  UCLs based on the CLT and 

the Student's t- statistic fail to provide the desired coverage to the population mean even when the sample 

sizes are as large as 100 or more. These facts have been verified in the published simulation experiments 

conducted on positively skewed data sets (e.g., Singh, Singh, and Engelhardt, 1997; Singh, Singh, and 

Iaci, 2002; and Singh and Singh, 2003).  

 

The initial development and all subsequent upgrades and enhancement of the ProUCL software have been 

funded by the USEPA through its Office of Research and Development (ORD).  Initially ProUCL was 

developed as a research tool for scientists and researchers of the Technical Support Center and ORD-

NERL, EPA Las Vegas. During 1999-2001, the initial intent and objectives of developing the ProUCL 

software (Version 1.0 and Version 2.0) were to provide a statistical research tool to EPA scientists which 

can be used to compute theoretically sound 95% upper confidence limits (UCL95s) of the mean routinely 

used in exposure assessment, risk management and cleanup decisions made at various CERCLA and 

RCRA sites (EPA 1992a, 2002a). During 2002, the peer-reviewed ProUCL version 2.1 (with Chebyshev 

inequality based UCLs) was released for public use. Several researchers have developed rigorous 

parametric and nonparametric statistical methods (e.g., Johnson, 1978; Grice and Bain, 1980; Efron 

(1981, 1982); Efron and Tibshirani, 1993; Hall (1988, 1992); Sutton, 1993; Chen, 1995; Singh, Singh, 

and Engelhardt, 1997; Singh, Singh, and Iaci, 2002) to compute upper limits (e.g., UCLs) which adjust 

for data skewness. Since Student's t-UCL, CLT-UCL, and percentile bootstrap UCL fail to provide the 

desired coverage to the population mean of skewed distributions, several parametric (e.g., gamma 

distribution based) and nonparametric (e.g., BCA bootstrap and bootstrap-t, Chebyshev UCL) UCL 

computation methods which adjust for data skewness were incorporated in ProUCL versions 3.0 and 

3.00.02 during 2003-2004. ProUCL version 3.00.02 also had graphical quantile-quantile (Q-Q) plots and 

GOF tests for normal, lognormal, and gamma distributions; capabilities to statistically analyze multiple 

variables simultaneously were also incorporated in ProUCL 3.00.02 (EPA 2004).   

 

It is important to compute decision statistics (e.g., UCLs, UTLs) which are cost-effective and protective 

of human health and the environment (balancing between Type I and Type II errors), therefore, one 

cannot dismiss the use of the better [better than t-UCL, CLT-UCL, ROS and KM percentile bootstrap 

UCL, KM-UCL (t)] performing UCL computation methods including gamma UCLs and the various 

bootstrap UCLs which adjust for data skewness. During 2004-2007, ProUCL was upgraded to versions 

4.00.02, and 4.00.04. These upgrades included exploratory graphical (e.g., Q-Q plots, box plots) and 

statistical (e.g., maximum likelihood estimation [MLE], KM, and ROS) methods for left-censored data 

sets consisting of nondetect (NDs) observations with multiple DLs or RLs. For uncensored and left-

censored data sets, these upgrades provide statistical methods to compute upper limits: percentiles, UPLs 

and UTLs needed to estimate site-specific background level constituent concentrations or background 

threshold values (BTVs). To address statistical needs of background evaluation projects (e.g., MARSSIM, 

2000; EPA 2002b), several single-sample and two-sample hypotheses testing approaches were also 

included in these ProUCL upgrades.  

 

During 2008-2010, ProUCL was upgraded to ProUCL 4.00.05. The upgraded ProUCL was enhanced by 

including methods to compute gamma distribution based UPLs and UTLs (Krishnamoorthy, Mathew, and 

Mukherjee, 2008). The Sample Size module to compute DQOs based minimum sample sizes needed to 
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address statistical issues associated with the various environmental projects (e.g., MARSSIM, 2000; EPA 

[2002c, 2006a, 2006b]) was also incorporated in ProUCL 4.00.05.  

 

During 2009-2011, ProUCL 4.00.05 was upgraded to ProUCL 4.1 and 4.1.01. ProUCL 4.1 (2010) and 

4.1.01 (2011) retain all capabilities of the previous versions of ProUCL software. Two new modules: 

Oneway ANOVA and Trend Analysis were included in ProUCL 4.1. The Oneway ANOVA module has 

both parametric and nonparametric ANOVA tests to perform inter-well comparisons. The Trend Analysis 

module can be used to determine potential upward or downward trends present in constituent 

concentrations identified in GW monitoring wells (MWs).  The Trend Analysis module can compute 

Mann-Kendall (MK) and Theil-Sen (T-S) trend statistics to determine upward or downward trends 

potentially present in analyte concentrations.  ProUCL 4.1 also has the Ordinary Least Squares (OLS) 

Regression module. In ProUCL 4.1, some modifications were made in decision tables used to make 

recommendations regarding the use of UCL95 to estimate EPC terms. Specifically, based upon the recent 

experience, developers of ProUCL re-iterated that the use of a lognormal distribution to estimate EPC 

terms and BTVs should be avoided, as the use of lognormal distribution tends to yield unrealistic and 

unstable values of the decision making statistics including UCL, UPL, and UTL; this is especially true 

when the sample size is <20-30 and the data set is moderately skewed to highly skewed. During March 

2011, a couple of webinars were presented describing the capabilities and use of the methods available in 

ProUCL 4.1. 

 

ProUCL version 5.0.00 represents an upgrade of ProUCL 4.1.01 (EPA, June 2011) which represents an 

upgrade of ProUCL 4.1.00 (EPA 2010). For uncensored and left-censored data sets, ProUCL 5.0 consists 

of all statistical and graphical methods that are available in the previous versions of the ProUCL software 

package except for a couple of poor performing and restricted (e.g., can be used only when a single 

detection limit is present) estimation methods such as the MLE and winsorization methods for left-

censored data sets. ProUCL has GOF tests for normal, lognormal, and gamma distributions for 

uncensored and left-censored data sets with NDs. ProUCL 5.0 has the extended version of the Shapiro-

Wilk (S-W) test to perform normal and lognormal GOF tests for data sets of sizes up to 2000  (Royston 

[1982, 1982a]).  In addition to normal and lognormal distribution based decision statistics, ProUCL 

software computes UCLs, UPLs, and UTLs based upon the gamma distribution.  

 

Several enhancements have been made in the UCLs and BTVs modules of the ProUCL 5.0 software. A 

new statistic, an upper simultaneous limit (Singh and Nocerino, 2002; Wilks, 1963) has been incorporated 

in the Upper limits/BTVs module of ProUCL 5.0.00 for data sets consisting of NDs with multiple DLs, a 

two-sample hypothesis test, the Tarone-Ware (T-W; Tarone and Ware, 1978) test has been incorporated 

in ProUCL 5.0. Nonparametric tolerance limits have been enhanced, and for specific values of confidence 

coefficients, coverage probability, and sample size, ProUCL 5.0 outputs the confidence coefficient 

actually achieved by a UTL. The Trend Analysis and OLS Regression modules can handle missing events 

to compute trend test statistics and generate trend graphs. Some new methods using KM estimates in 

gamma (and lognormal) distribution based UCL, UPL, and UTL equations have been incorporated to 

compute the decision statistics for data sets consisting of nondetect observations. To facilitate the 

computation of UCLs from ISM based samples (ITRC, 2012); the minimum sample size requirement has 

been lowered to 3, so that one can compute the UCL95 based upon ISM data sets of sizes Ó3.  

 

All known bugs, typographical errors, and discrepancies found by the developers and the various users of 

the ProUCL software package have been addressed in the ProUCL version 5.0.00.  Specifically, a 

discrepancy found in the estimate of mean based upon the KM method has been fixed in ProUCL 5.0. 

Some changes have been made in the decision logic used in GOF and UCL modules. In practice, based 

upon a given data set, it is well known that the two statistical tests (e.g., Theil-Sen and OLS trend tests) 
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can lead to different conclusions. To streamline the decision logic associated with the computation of the 

various UCLs, the decision tables in ProUCL 5.0 have been updated.  Specifically, for each distribution if 

at least one of the two GOF tests (e.g., Shapiro-Wilk or Lilliefors test for normality) determines that the 

hypothesized distribution holds, then ProUCL concludes that the data set follows the hypothesized 

distribution, and decision statistics are computed accordingly. Additionally, for gamma distributed data 

sets, ProUCL 5.0 suggests the use of the: adjusted gamma UCL for samples of sizes Ò 50 (instead of 40 

suggested in previous versions); and approximate gamma UCL for samples of sizes >50.  

 

Also, for samples of larger sizes (e.g., with n > 100) and small values of the gamma shape parameter, k 

(e.g., k Ò 0.1), significant discrepancies were found in the critical values of the two gamma GOF test 

statistics (Anderson-Darling and Kolmogorov Smirnov tests) obtained using the two gamma deviate 

generation algorithms: Whitaker  (1974) and Marsaglia and Tsang (2000). For values of k Ò 0.2, the 

critical values of the two gamma GOF tests: Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S) 

tests have been updated using the currently available more accurate gamma deviate generation algorithm 

due to Marsaglia and Tsang's (2000); more details about the implementation of their algorithm can be 

found in Kroese, Taimre, and Botev (2011). For values of the shape parameter, k=0.025, 0.05, 0.1, and 

0.2, the critical value tables for these two tests have been updated by incorporating the newly generated 

critical values for the three significance levels: 0.05, 0.1, and 0.01. The updated tables are provided in 

Appendix A. It should be noted that for k=0.2, the older and the newly generated critical values are in 

general agreement. 

 

ProUCL 5.0 also has a new Background Incremental Sample Simulator (BISS) module (temporarily 

blocked for general public use) which can be used on a large existing discrete background data set to 

simulate background incremental samples (BIS). The availability of a large discrete data set collected 

from areas with geological formations and conditions comparable to the DUs (background or onsite) of 

interest is a requirement for successful application of this module. The simulated BISS data can be 

compared with the actual field ISM (ITRC, 2012) data collected from the various DUs using other 

modules of ProUCL 5.0. The values of the BISS data are not directly available to users; however, the 

simulated BISS data can be accessed by the various modules of ProUCL 5.0 to perform desired statistical 

evaluations. For example, the simulated background BISS data can be merged with the actual field ISM 

data after comparing the two data sets using a two-sample t-test; the simulated BISS or the merged data 

can be used to compute a UCL of the mean or a UTL.  

 

Note: The ISM methodology used to develop the BISS module is a relatively new approach; methods 

incorporated in this BISS module require further investigation. The BISS module has been temporarily 

blocked for use in ProUCL 5.0 as this module is awaiting adequate guidance and instructions for its 

intended use on discrete background data sets.   

 

Software ProUCL version 5.0, its earlier versions: ProUCL version 3.00.02, 4.00.02, 4.00.04, 4.1.00, and 

4.1.01, associated Facts Sheet, User Guides and Technical Guides (e.g., EPA [2004, 2007, 2009a, 2009b, 

2010a, 2010b]) can be downloaded from the EPA website:  

 

http://www.epa.gov/osp/hstl/tsc/software.htm 

http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm 

 

ProUCL 5.0 is a user-friendly freeware package providing statistical and graphical tools needed to 

address statistical issues described in several EPA guidance documents. Considerable effort has been 

made to provide a detailed technical guide to help practitioners understand statistical methods needed to 

address statistical needs of their environmental projects. ProUCL generates detailed output sheets and 

http://www.epa.gov/osp/hstl/tsc/software.htm
http://www.epa.gov/osp/hstl/tsc/softwaredocs.htm
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graphical displays for each method which can be used to educate students learning environmental 

statistical methods. Like previous versions, ProUCL 5.0 can process many variables simultaneously to 

compute various tests (e.g., ANOVA and trend test statistics) and decision statistics including UCL of 

mean, UPLs, and UTLs, a capability not available in other software packages such as Minitab 16 and 

NADA for R (Helsel, 2013).  Without the availability of this option, the user has to compute decision and 

test statistics for one variable at a time which becomes cumbersome when dealing with a large number of 

variables. ProUCL 5.0 also has the capability of processing data by groups. ProUCL 5.0 is easy to use; it 

does not require any programming skills as needed when using programs written in R Script.  

The Need for ProUCL Software 

EPA guidance documents (e.g., EPA [1989a, 1989b, 1992a, 1992b, 1994, 1996, 2000, 2002a, 2002b, 

2002c, 2006a, 2006b, 2009a, and 2009b]) describe statistical methods including: DQOs based sample size 

determination procedures, methods to compute decision statistics: UCL95, UPL, and UTLs, parametric 

and nonparametric hypotheses testing approaches, Oneway ANOVA, OLS regression, and trend 

determination approaches. Specifically, EPA guidance documents (e.g., EPA  [2002c, 2006a, 2006b; and 

MARSSIM, 2000]) describe DQOs based parametric and nonparametric minimum sample size 

determination procedures needed: to compute decision statistics (e.g., UCL95); to perform site versus 

background comparisons (e.g., t-test, proportion test, WMW test); and to determine the number of 

discrete items (e.g., drums filled with hazardous material) that need to be sampled to meet the DQOs 

(e.g., specified proportion, p0 of defective items, allowable error margin in an estimate of mean).  

Statistical methods are used to compute test statistics (e.g., S-W test, t-test, WMW test, T-S trend 

statistic) and decision statistics (e.g., 95% UCL, 95% UPL, UTL95-95) needed to address statistical 

issues associated with CERCLA and RCRA site projects. For example, exposure and risk management 

and cleanup decisions in support of EPA projects are often made based upon the mean concentrations of 

the contaminants/constituents of potential concern (COPCs). Site-specific BTVs are used in site versus 

background evaluation studies.  A UCL95 is used to estimate the EPC terms (EPA1992a, 2002a); and 

upper limits such as upper percentiles, UPLs, or UTLs are used to estimate BTVs or not-to-exceed values 

(EPA 1992b, 2002b, and 2009).  The estimated BTVs are also used: to identify the COPCs; to identify the 

site areas of concern (AOCs); to perform intra-well comparisons to identify MWs not meeting specified 

standards; and to compare onsite constituent concentrations with site-specific background level 

constituent concentrations. Oneway ANOVA is used to perform inter-well comparisons, OLS regression 

and trend tests are often used to determine potential trends present in constituent concentrations identified 

in groundwater monitoring wells (MWs). Most of the methods described in this paragraph are available in 

the ProUCL 5.0 software package. 

 

It is noted that not much guidance is available in the guidance documents cited above to compute rigorous 

UCLs, UPLs, and UTLs for moderately skewed to highly skewed uncensored and left-censored data sets 

consisting of NDs with multiple DLs, a common occurrence in environmental data sets.  Several 

parametric and nonparametric methods are available in the statistical literature (Singh, Singh, and 

Engelhardt, 1997; Singh, Singh, and Iaci, 2002; Krishnamoorthy et al. 2008; Singh, Maichle, and Lee, 

2006) to compute UCLs and other upper limits which adjust for data skewness. During the years, as new 

methods  became available to address statistical issues related to the environmental projects,  those 

methods were incorporated in ProUCL software so that environmental scientists and decision makers can 

make more accurate and informative decisions based upon those rigorous statistical methods.  Until 2006, 

not much guidance was provided on how to compute UCL95 of mean and other upper limits (e.g., UPLs 

and UTLs) based upon data sets consisting of NDs with multiple DLs.  For data sets with NDs, Singh, 

Maichle, and Lee (EPA 2006) conducted an extensive simulation study to compare the performances of 

the various estimation methods (in terms of bias in the mean estimate) and UCL computation methods (in 
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terms of coverage provided by a UCL).  They demonstrated that the nonparametric KM method performs 

well in terms of bias in estimates of mean.  They also concluded that UCLs computed using the Student's 

t-statistic and percentile bootstrap method using the KM estimates do not provide the desired coverage to 

the population mean of skewed data sets. They demonstrated that the depending upon sample size and 

data skewness, UCLs computed using KM estimates and: the BCA bootstrap method (mildly skewed data 

sets); the bootstrap-t method, and the Chebyshev inequality (moderately to highly skewed data sets) 

provide better coverage (closer to the specified 95% coverage) to the population mean than the various 

other UCL computation methods. Based upon their findings, during 2006-2007, several UCL and other 

upper limits computation methods based upon KM and ROS estimates were incorporated in the ProUCL 

4.0 software. It is noted that since the inclusion of the KM method in ProUCL 4.0 (2007), the use of the 

KM method based upper limits has become popular in many environmental applications to estimate EPC 

terms and background threshold values (BTVs).  The KM method is also described in the latest version of 

the unified RCRA guidance document (EPA 2009). 

It is not easy to justify distributional assumptions of data sets consisting of both detects and NDs with 

multiple DLs. Therefore, based upon the published literature and recent experience, parametric UCL 

computation methods such as the MLE methods for normal and lognormal distributions are excluded 

from ProUCL 5.0.  Additionally, the winsorization method (Gilbert, 1987) has also been excluded from 

ProUCL 5.0 due to its poor performance. ProUCL software is also used for teaching environmental 

statistics courses therefore, in addition to statistical and graphical methods routinely used to address 

statistical needs of environmental projects, due to their popularity some poor performing methods such as 

the substitution DL/2 method and Land's (1975) H-statistic based UCL computation method have been 

retained in ProUCL version 5.0.00 for research and comparison purposes.  

 

Methods incorporated in ProUCL 5.0 and in its earlier versions have been tested and verified extensively 

by the developers and various researchers, scientists, and users. Specifically, the results obtained by 

ProUCL 5.0 are in agreement with the results obtained by using other software packages including 

Minitab, SAS, and programs available in R-Script (not all methods are available in these software 

packages).  Additionally, ProUCL 5.0 outputs several intermediate results (e.g.,  khat and biased corrected 

kstar estimates of the gamma shape parameter, k) and critical values (e.g., K factor used to compute 

UTLs, d2max needed to compute USL) needed to compute the various decision statistics of interest, 

which may help the interested users to verify statistical results computed by the ProUCL software. 

ProUCL is a user friendly software which can be used to: process multiple variables (analytes) 

simultaneously (e.g., perform ANOVA on many variables); process grouped data; to generate and display 

multiple plots (Q-Q plots) on the same graphical display. No programming skills are needed to use 

ProUCL software.  ProUCL provides warning messages and makes suggestions to help a typical user in 

selecting the most appropriate decision statistic (e.g., UCL).  

Note: The availability of intermediate results and critical values can be used to compute lower limits and 

two-sided intervals which are not as yet available in the ProUCL software. 

For left-censored data sets, ProUCL 5.0 computes decision statistics (e.g., UCL, UPL, and UTL) based 

upon KM estimates computed in a straight forward manner without flipping the data and re-flipping the 

decision statistics; these operations are not easy for a typical user to understand and perform and can 

become quite tedious when multiple analytes need to be processed. Moreover, in environmental 

applications it is important to compute accurate estimates of standard deviations which are needed to 

compute the decision making statistics including UPLs and UTLs.  Decision statistics (UPL, UTL) based 

upon a KM estimate of the of standard deviation computed using indirect methods can be different from 

the statistics computed using an estimate of sd obtained using the KM method directly, especially when 
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one is dealing with skewed data set or using a log-transformation. These issues are elaborated by 

examples discussed in this Guide and the accompanying ProUCL 5.0 User Guide. 

For uncensored data sets, researchers (e.g., Johnson (1978), Chen (1995), Efron and Tibshirani (1993), 

Hall [1988, 1992], more references in Chapters 2 and 3) had developed parametric (e.g., gamma 

distribution based) and nonparametric (bootstrap-t and Hall's bootstrap method, modified-t) methods to 

compute decision statistics which adjust for data skewness. For uncensored positively skewed data sets, 

Singh, Singh, and Iaci (2002) and Singh and Singh (2003) performed simulation experiments to compare 

the performances (in terms of coverage probabilities) of the various UCL computation methods described 

in the literature. They demonstrated that for skewed data sets, UCLs based upon Student's t statistic,  

central limit theorem (CLT), and percentile bootstrap method tend to underestimate the population mean 

(EPC term).  It is reasonable to state and assume the findings of the simulation studies performed on 

uncensored skewed data sets to compare the performances of the various UCL computation methods can 

be extended to skewed left-censored data sets. Based upon the findings of those studies performed on 

uncensored data sets and also using the findings  summarized in Singh, Maichle, and Lee (2006), it is 

concluded that t-statistic, CLT, and the percentile bootstrap method based UCLs computed using KM 

estimates (and also ROS estimates)  underestimate the population mean of moderately skewed to highly 

skewed data sets. Interested users may want to verify these statements via simulation experiments or 

otherwise. Like uncensored skewed data sets, for left-censored data sets, ProUCL 5.0 offers several 

parametric and nonparametric methods to compute UCLs and other limits which adjust for data skewness. 

 

In earlier versions of the ProUCL software (e.g., ProUCL 4.00.02), for left-censored data sets, KM 

estimates were used in the normal distribution based equations to compute the various upper limits. 

However, normal distribution based upper limits (e.g., t-UCL) using KM estimates (or any other 

estimates such as ROS estimates) fail to provide the specified coverage to the parameters (e.g., mean, 

percentiles) of populations with skewed distributions (Singh, Singh, and Iaci, 2002, Johnson, 1978, Chen 

1995).  Also, the nonparametric UCL computation methods (e.g., percentile bootstrap) do not provide the 

desired coverage to the population means of skewed distributions (e.g., Hall [1988, 1992], Efron and 

Tibshirani, 1993). For an example, the use of t-UCL or the percentile bootstrap UCL method on robust 

ROS estimates or on KM estimates underestimates the population mean for moderately skewed to highly 

skewed data sets. Chapters 3 and 5 of this document describe parametric and nonparametric KM method 

based upper limits computation methods (and available in ProUCL 5.0) which adjust for data skewness. 

The KM method yields good estimates of the population mean and standard deviation (Singh, Maichle, 

and Lee, 2006); however upper limits computed using the KM or ROS estimates in normal equations or 

in the percentile bootstrap method do not account for skewness present in the data set. Appropriate UCL 

computation methods which account for data skewness should be used on KM or ROS estimates. For left-

censored data sets, ProUCL 5.0 computes upper limits using KM estimates in gamma (lognormal) UCL, 

UPL, and UTL equations (e.g., also suggested in EPA 2009) provided the detected observations in the 

left-censored data set follow a gamma (lognormal) distribution. 

Recently, the use of the ISM methodology has been recommended (ISM ITRC, 2012) to collect soil 

samples needed to estimate mean concentrations of the DUs requiring characterization and remediation 

activities. ProUCL can be used to compute UCLs based upon ISM data as described and recommended in 

the ITRC ISM Tech Reg Guide (2012). At many sites, large amounts of discrete background data are 

already available which are not directly comparable to the actual field ISM data (onsite or background). 

To compare the existing discrete background data with field ISM data, the BISS module (blocked for 

general use in ProUCL version 5.0 awaiting guidance and instructions for its intended use) of ProUCL 5.0 

can be used on a large (e.g., consisting of at least 30 observations) existing discrete background data set. 

The BISS module simulates incremental sampling methodology based equivalent incremental background 
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samples; and each simulated BISS sample represents an estimate of the  mean of the population 

represented by the discrete background data set. The availability of a large discrete background data set 

collected from areas with geological conditions comparable to the DU(s) of interest (onsite DUs) is a 

requirement for successful application of this module. The user cannot see the simulated BISS data; 

however the simulated BISS data can be accessed by the various other modules of ProUCL 5.0 to perform 

desired statistical evaluations. For example, the simulated BISS data can be merged with the actual field 

ISM background data after comparing the two data sets using a two-sample t-test. The actual field ISM or 

the merged ISM and BISS data can be accessed by the various modules of ProUCL to compute a UCL of 

mean or a UTL.  

ProUCL 5.0 Capabilities 

A summary of statistical methods available in the ProUCL software is provided as follows. 

Assumptions: Like most statistical methods, statistical methods to compute upper limits (e.g., UCLs, 

UPLs, UTLs) are also based upon certain assumptions including the availability of a randomly collected 

data set consisting of independently and identically distributed (i.i.d) observations representing the 

population (e.g., site area, reference area) under investigation. A UCL of the mean (of a population) and 

BTV estimates (UPL, UTL) should be computed using a randomly collected (simple random or 

systematic random) data set representing a single statistical population (e.g., site population or 

background population). If multiple populations (e.g., background and site data mixed together) are 

present in a data set, it is recommended to  separate them out first by using the population partitioning 

techniques (e.g., Singh, Singh, and Flatman 1994), and then compute appropriate decision statistics  (e.g., 

95% UCLs)  separately for each identified population. The topic of population partitioning and the 

extraction of a valid site-specific background data set from a broader mixture data set potentially 

consisting of both onsite and offsite data are beyond the scope of ProUCL 5.0 and this guidance 

document. Parametric estimation and hypotheses testing methods (e.g., t-test, UCLs, UTLs) are based 

upon distributional (e.g., normal distribution, gamma) assumptions.  ProUCL has GOF tests for normal, 

gamma, and lognormal distributions. 

 

Multiple Constituents/Variables: Environmental scientists need to evaluate many constituents in their 

decision making processes (exposure and risk assessment).  ProUCL can process multiple 

constituents/variables simultaneously in a user friendly manner, an option not available in other freeware 

or commercial software packages such as NADA for R (Helsel, 2013). This option is very useful when 

one has to process many variables/analytes and compute decision statistics (e.g., UCLs, UPLs, and UTLs) 

and test statistics (e.g., ANOVA test, trend test) for those variables/analytes. 

 

Analysis by a Group Variable: ProUCL also has the capability of processing data by groups. A valid 

group column should be included in the data file. The analyses of data categorized by a group ID variable 

such as: 1) Surface vs. Subsurface; 2) AOC1 vs. AOC2; 3) Site vs. Background; and 4) Upgradient vs. 

Downgradient MWs are common in many environmental applications. ProUCL offers this option for data 

sets with and without nondetects. The Group Option provides a useful option to perform various 

statistical tests and methods including graphical displays separately for each of the group (samples from 

different populations) that may be present in a data set. For an example, the same data set may consist of 

analytical data from the various groups or populations representing site, background, two or more AOCs, 

surface, subsurface, monitoring wells. By using this option, the graphical displays (e.g., box plots, Q-Q 

plots, histograms) and statistics including computation of background statistics, UCLs, ANOVA test, 

trend test and OLS regression statistics can be easily computed separately for each group in the data set.  

 

Exploratory Graphical Displays for Uncensored and Left-Censored Data Sets: Graphical methods 
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included in the Graph module of ProUCL include: Q-Q plots (data in same column), multiple Q-Q plots 

(data in different columns), box plots, multiple box plots, and histograms. These graphs can also be 

generated for data sets consisting of ND observations.  Additionally, the OLS Regression and Trend 

Analysis module can be used to generate graphs displaying parametric OLS regression lines with 

confidence intervals and prediction intervals around the regression lines and nonparametric Theil-Sen 

trend lines. The Trend Analysis module can generate trend graphs for data sets without a sampling event 

variable, and also generate time series graphs for data sets with a sampling event (time) variable.  

ProUCL 5.0 accepts only numerical values for the event variable. Graphical displays of a data set are 

useful to gain added insight contained in a data set that may not otherwise be clear by looking at test 

statistics such as t-test, Dixon test or T-S test.  Unlike test statistics (e.g., t-test, MK test, AD test) and 

decision statistics (e.g., UCL, UTL), graphical displays do not get influenced by outliers and nondetect 

observations. It is suggested that the final decisions be made based upon statistical results as well as 

graphical displays. 

 

Side-by-side box plots or multiple Q-Q plots are useful to graphically compare concentrations of two or 

more groups (e.g., several monitoring wells). The GOF module of ProUCL generates Q-Q plots for 

normal, gamma, and lognormal distributions based upon uncensored as well as left-censored data sets 

with NDs. All relevant information such as the test statistics, critical values and p-values (when available) 

are also displayed on the GOF Q-Q plots. In addition to providing information about the data distribution, 

a normal Q-Q plot in the original raw scale also helps to identify outliers and multiple populations that 

may be present in a data set. On a Q-Q plot, observations well-separated from the majority of the data 

may represent potential outliers coming from a population different from the main dominant population 

(e.g., background population). In a Q-Q plot, jumps and breaks of significant magnitude suggest the 

presence of observations coming from multiple populations (onsite and offsite areas).  ProUCL can also 

be used to display box plots with horizontal lines displayed at pre-specified compliance limits or 

computed upper limits (e.g., UPL, UTL) superimposed on the same graph. This kind of graph provides a 

visual comparison of site data with compliance limits and/or BTV estimates.  

 

Outlier Tests:  ProUCL also has a couple of classical outlier test procedures (EPA 2006b, 2009), such as 

the Dixon test and the Rosner test. The details of these outlier tests are described in Chapter 7. These 

outlier tests often suffer from masking effects in the presence of multiple outliers.  It is suggested that the 

classical outlier procedures should always be accompanied by graphical displays including box plots and 

Q-Q plots. Description and use of the robust and resistant (to masking) outlier procedures (Rousseeuw 

and Leroy, 1987; Singh and Nocerino, 1995) are beyond the scope of ProUCL 5.0.  Interested users are 

encouraged to try the Scout 2008 software package (EPA 2009) to use the robust outlier identification 

methods especially when dealing with multivariate data sets consisting of data for several 

variables/analytes. 

  

Outliers represent observations coming from populations different from the main dominant population 

represented by the majority of the data set.  Outliers distort most statistics (e.g., mean, UCLs, UPLs, test 

statistics) of interest.  Therefore, it is desirable to compute decisions statistics based upon data sets 

representing the main dominant population and not to compute distorted statistics by accommodating a 

few low probability outliers (e.g., by using a lognormal distribution). Moreover, it should be noted that 

even though outliers might have minimal influence on hypotheses testing statistics based upon ranks (e.g., 

WMW test), outliers do distort several nonparametric statistics including bootstrap methods such as 

bootstrap-t and Hall's bootstrap UCLs and other nonparametric UPLs and UTLs computed using the 

higher order statistics.  
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Goodness-of-Fit Tests: In addition to computing simple summary statistics for data sets with and without 

NDs, ProUCL 5.0 has GOF tests for normal, lognormal and gamma distributions. To test for normality 

(lognormality) of a data set, ProUCL has the Lilliefors test and the extended S-W test for samples of sizes 

up to 2000 (Royston, 1982, 1982a). For the gamma distribution, two GOF tests: the Anderson-Darling 

test (1954) and Kolmogorov Smirnov test (Schneider, 1978) are available in ProUCL. For samples of 

larger sizes (e.g., with n > 100) and small values of the gamma shape parameter, k (e.g., k Ò 0.1), 

significant discrepancies were found in the critical values of the two gamma GOF test statistics 

(Anderson-Darling and Kolmogorov Smirnov tests) obtained using the two gamma deviate generation 

algorithms: Whitaker  (1974) and Marsaglia and Tsang (2000). For values of k Ò 0.2, the critical values of 

the two gamma GOF tests: Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S) tests have been 

updated using the currently available more efficient gamma deviate generation algorithm due to 

Marsaglia and Tsang's (2000); more details about the implementation of their algorithm can be found in 

Kroese, Taimre, and Botev (2011). For values of the shape parameter, k=0.025, 0.05, 0.1, and 0.2, the 

critical value tables for these two GOF tests have been updated by incorporating the newly generated 

critical values for three levels of significance: 0.05, 0.1, and 0.01. The updated tables are provided in 

Appendix A. It should be noted that for k=0.2, the older (generated in 2002) and the newly generated 

critical values are in general agreement. 

 

ProUCL also generates GOF Q-Q plots for normal, lognormal, and gamma distribution displaying all 

relevant statistics including GOF test statistics. GOF tests for data sets with and without NDs are 

described in chapters 2 and 3 of this guidance document. For data sets consisting of NDs, it is not easy to 

verify the distributional assumptions correctly, especially when the data set consists of a large percentage 

of NDs with multiple DLs and NDs exceeding the detected values. Typically, decisions about 

distributions of data sets with NDs are based upon GOF test statistics computed using the data obtained: 

without NDs; replacing NDs by 0, DL, or DL/2; using imputed NDs based upon a ROS (e.g., lognormal 

ROS) method.  For data sets with NDs, ProUCL can perform GOF tests using methods listed above. 

Using the "Imputed NDs using ROS Methods" option of the "Stats/Sample Sizes" module of ProUCL 5.0,  

additional columns can be generated to store imputed (estimated) values for NDs based upon normal 

ROS, gamma ROS, and lognormal ROS (also known as robust ROS) methods. 

 

Sample Size Determination and Power Evaluation: Sample Sizes module in ProUCL can be used to 

develop DQOs based sampling designs needed to address statistical issues associated with the various 

polluted sites projects. ProUCL 5.0 provides user friendly options to enter the desired/pre-specified values 

for decision parameters (e.g., Type I and Type II error rates) and other DQOs used to determine minimum 

sample sizes for the selected statistical applications including: estimation of mean, single and two-sample 

hypothesis testing approaches, and acceptance sampling. Both parametric (e.g., for t-tests) and 

nonparametric (e.g., Sign test, WRS test) sample size determination methods as described in EPA (2002c, 

2006a, 2006b) and MARSSIM (2000) guidance documents are available in ProUCL version 5.0. ProUCL 

also has the sample size determination option for acceptance sampling of lots of discrete objects such as a 

lot (batch, set) of drums containing of hazardous waste (e.g., RCRA applications, EPA 2002c). When the 

sample size for an application (e.g., verification of cleanup level) is not computed using the DQOs based 

sampling design process, the Sample Size module can be used to assess the power of the test statistic used 

in retrospect. The mathematical details of the Sample Sizes module are given in Chapter 8. 

 

Bootstrap Methods: Bootstrap methods are computer intensive nonparametric methods which can be used 

to compute decision statistics of interest when a data set does not follow a known distribution, or when it 

is difficult to analytically derive the distributions of statistics of interest. It is well-known that for 

moderately skewed to highly skewed data sets, UCLs based upon standard bootstrap and the percentile 

bootstrap methods do not perform well (e.g., Efron [1981, 1982]; Efron and Tibshirani,1993; Hall 
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[1988,1992]; Singh, Singh, and Iaci 2002; Singh and Singh, 2003,  Singh, Maichle and Lee 2006) as the 

interval estimates based upon these bootstrap methods fail to provide the specified coverage (e.g., UCL 

95 does not provide adequate 95% coverage to population mean) to the population mean. For skewed data 

sets, Efron and Tibshirani (1993) and Hall (1988, 1992) considered other bootstrap methods such as the 

BCA, bootstrap-t and Hallôs bootstrap methods. For skewed data sets, bootstrap-t and Hallôs bootstrap 

(meant to adjust for skewness) methods perform better (e.g., in terms of coverage for the population 

mean) than the other bootstrap methods. However, it has been noted (e.g., Efron and Tibshirani ,1993, 

Singh, Singh, and Iaci,2002) that these two bootstrap methods tend to yield erratic and inflated UCL 

values (orders of magnitude higher than other UCLs) in the presence of outliers. Similar behavior of the 

bootstrap- t UCL and Hallôs bootstrap UCL methods is observed based upon data sets consisting of NDs 

and outliers.  Due to the reasons described above, whenever applicable, ProUCL 5.0 provides cautionary 

notes and warning messages regarding the use of bootstrap-t and Halls bootstrap UCL methods.  

 

¶ For nonparametric uncensored and left-censored data sets with NDs, depending upon data variability 

and skewness, ProUCL recommends the use of BCA bootstrap, bootstrap-t, or Chebyshev inequality 

based methods to compute decision statistics. 

 

Hypotheses Testing Approaches: ProUCL software has both Single- Sample (e.g., Studentôs t-test, sign 

test, proportion test, WSR test) and Two-Sample (Studentôs t-test, WMW test, Gehan test, and T-W test) 

parametric and nonparametric hypotheses testing approaches.  Hypotheses testing approaches in ProUCL 

can handle both full-uncensored data sets without NDs, and left-censored data sets with NDs. Most of the 

hypotheses tests also report associated p-values. For some hypotheses tests (e.g., WMW test, WSR test, 

proportion test), large sample p-values based upon normal approximation are computed using the 

continuity correction factors.  The mathematical details of the various Single-sample and Two-Sample 

hypotheses testing approaches are described in Chapter 6 of this document. 

 

¶ Single-sample: parametric (Studentôs t-test) and nonparametric (Sign test, WSR test, tests for 

proportions and percentiles) hypotheses testing approaches are available in ProUCL. The single-

sample hypotheses tests are used when the environmental parameters such as the cleanup standard, 

action level, or compliance limits are known, and the objective is to compare site concentrations with 

those known threshold values. Specifically, a t-test (or a sign test) may be used to verify the 

attainment of cleanup levels at an AOC) after a remediation activity has taken place; and a test for 

proportion may be used to verify if the proportion of exceedances of an action level (or a compliance 

limit) by sample observations collected from an AOC (or a MW) exceeds a certain specified 

proportion (e.g., 1%, 5%, 10%).  

 

¶ The differences between these tests should be noted and understood. Specifically, a t-test or a 

Wilcoxon Signed Rank (WSR) test are used to compare the measures of location and central 

tendencies (e.g., mean, median) of a site area (e.g., AOC) to a cleanup standard, Cs or action level 

also representing a measure of central tendency (e.g., mean, median); whereas, a proportion test 

compares if the proportion of site observations from an AOC exceeding a compliance limit (CL) 

exceeds a specified proportion, P0 (e.g., 5%, 10%). The percentile test compares a specified percentile 

(e.g., 95
th
) of the site data to a pre-specified upper threshold (e.g., action level).  

 

¶ Two-sample: Hypotheses tests (Studentôs t-test, WMW test, Gehan test, T-W test) are used to perform 

site versus background comparisons, compare concentrations of two or more AOCs, compare 

concentrations of GW monitoring wells (MWs). It should be noted that as cited in the literature, some 

of the hypotheses testing approaches (e.g., nonparametric two-sample WMW) deal with the single 

detection limit scenario. When using the WMW test on a data set with multiple detection limits, all 
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observations (detects and NDs) below the largest detection limit need to be considered as NDs 

(Gilbert, 1987). This in turn tends to reduce the power and increase uncertainty associated with test. 

As mentioned before, it is always desirable to supplement the test statistics and conclusions with 

graphical displays such as the multiple Q-Q plots and side-by-side box plots. Gehan test or Tarone-

Ware (new in ProUCL 5.0) should be used in cases where multiple detection limits are present.  

 

Computation of Upper Limits including UCLs, UPLs, UTLs, and USLs: ProUCL software has parametric 

and nonparametric methods including bootstrap and Chebyshev inequality based methods to compute the 

various decision making statistics such as UCLs of mean (EPA 2002a), percentiles, UPLs for future k 

(Ó1) observations, UTLs (e.g., EPA 1992b, EPA 2009) and upper simultaneous limits (USLs) (Singh and 

Nocerino, [1995, 2002])  based upon uncensored full data sets and left-censored data sets consisting of 

NDs with multiple DLs. Methods incorporated in ProUCL cover a wide range of skewed data 

distributions with and without NDs. In addition to normal and lognormal distributions based upper limits, 

ProUCL 5.0 can compute parametric UCLs, percentiles, UPLs for future k (Ó1) observations, UTLs, and 

USLs based upon gamma distributed data sets. For data sets with NDs, ProUCL has several estimation 

methods including the KM method (1958), ROS methods (Helsel, 2005) and substitution methods such as 

replacing NDs by DL or DL/2 (Gilbert, 1987, EPA 2006b).  Substitution DL/2 method has been 

incorporated in ProUCL for research and comparison purposes as requested by EPA scientists.  

 

Computation of UCLs Based Upon Uncensored Data Sets without NDs:  Parametric UCL computation 

methods in ProUCL for uncensored data sets include: Studentôs t-UCL, Approximate gamma UCL (using 

chi-square approximation), Adjusted gamma UCL (adjusted for level significance), Landôs H-UCL, and 

Chebyshev inequality-based UCL (using MVUEs of parameters of a lognormal distribution).  

Nonparametric UCL computation methods for data sets without NDs include: CLT-based UCL, 

Modified-t-statistic (adjusted for skewness)-based UCL, Adjusted-CLT (adjusted for Skewness)-based 

UCL, Chebyshev inequality based-UCL (using sample mean and standard deviation), Jackknife method-

based UCL, UCL based upon standard bootstrap, UCL based upon percentile bootstrap, UCL based upon 

BCA bootstrap, UCL based upon bootstrap-t, and UCL based upon Hallôs bootstrap method.  The details 

of UCL computation methods for uncensored data sets are summarized in Chapter 2. 

 

Computations of UPLs, UTLs, and USLs Based Upon Uncensored  Data Sets without NDs: For 

uncensored data sets without NDs, ProUCL can compute parametric percentiles, UPLs for k (kÓ1) future 

observations, UPLs for mean of k (Ó1) future observations, UTLs, and USLs based upon  normal, gamma,  

and lognormal distributions. Nonparametric upper limits are typically based upon order statistics of a data 

set such as a background or a reference area data set. Depending upon the size of the data set, the higher 

order statistics (maximum, second largest, third largest, and so on) are used to compute these upper limits 

(e.g., UTLs). Depending upon the sample size, specified confidence coefficient and coverage probability, 

ProUCL 5.0 outputs the actual confidence coefficient achieved by a nonparametric UTL.  The details of 

the parametric and nonparametric computation methods for UPLs, UTLs, and USLs are described in 

Chapter 3 of this document.   

 

Computation of UCLs, UPLs, UTLs, and USLs Based Upon Left-Censored Data Sets with NDs: For data 

sets with NDs, ProUCL computes UCLs, UPLs, UTLs, and USLs based upon mean and sd computed 

using logROS (LROS, robust ROS), Gamma ROS (GROS), KM, and DL/2 methods.  For nonparametric 

data sets, to adjust for skewness, ProUCL uses bootstrap methods and Chebyshev inequality to compute 

UCLs and other limits using estimates of mean and standard deviation obtained using methods listed 

above. ProUCL also uses parametric methods on KM (and ROS) estimates provided detected 

observations in the left-censored data set follow a parametric distribution. For example, if the detected 

data follow a gamma distribution, ProUCL uses KM estimates in gamma distribution based equations to 



13 

compute UCLs, UTLs, and other upper limits. Based upon a Monte Carlo study performed by Singh, 

Maichle, and Lee (EPA, 2006), ProUCL recommends the use of the Kaplan-Meier (1958) estimates in 

bootstrap and Chebyshev inequality to compute the various decision statistics (e.g.,UCL95, UPL, UTL) 

of interest. ProUCL 5.0 suggests the use of KM-Gamma upper limits when the detected data follow a 

gamma distribution. ProUCL computes KM estimates directly using left-censored data sets without 

flipping data and re-flipping decision statistics. The KM method incorporated in ProUCL computes both 

sd and standard error (SE) of the mean.  For historical reasons and for comparison and research purposes, 

the DL/2 substitution method and H-UCL based upon LROS method have been retained in ProUCL 5.0.  

The inclusion of the substitution method in ProUCL should not be inferred as an endorsement of those 

methods by ProUCL software and its developers. The details of the UCL computation methods for data 

sets with NDs are given in Chapter 4 and the description of the various other upper limits: UPLs, UTLs, 

and USLs for data sets with NDs are given in Chapter 5.  

 

Oneway ANOVA, OLS Regression and Trend Analysis: The Oneway ANOVA module has both classical 

and nonparametric K-W ANOVA tests as described in EPA guidance documents (e.g., EPA [2006b, 

2009]). Oneway ANOVA is used to compare means (or medians) of multiple groups such as comparing 

mean concentrations of several areas of concern; and performing inter-well comparisons comparing 

concentrations of several MWs.  The OLS Regression option computes the classical OLS regression line, 

and generates graphs displaying the OLS line, confidence bands and prediction bands around the 

regression line. All statistics of interest including slope, intercept, and correlation coefficient are 

displayed on the OLS line graph. The Trend Analysis module has two nonparametric trend tests: M-K 

trend test and Theil-Sen trend test. Using this option, one can generate trend graphs and time-series 

graphs displaying Theil-Sen trend line and all other statistics of interest with associated p-values. 

 

In GW monitoring applications, OLS regression, trend tests, and time series plots are often used to 

identify trends (e.g., upwards, downwards) in constituent concentrations of the various GW monitoring 

wells over a certain period of time (EPA 2009). The details of Oneway ANOVA are given in Chapter 9, 

and OLS regression line and Trend tests methods are described in Chapter 10. 

 

BISS Module: At many sites, a large amount of discrete onsite and background data are already available 

which are not directly comparable to actual field ISM data. In order to provide a tool to compare the 

existing discrete data with ISM data, the BISS module of ProUCL 5.0 may be used on a large existing 

discrete data set. The ISM methodology used to develop the BISS module is a relatively new approach; 

methods incorporated in this BISS module require further investigation. The BISS module has been 

temporarily blocked for use in ProUCL 5.0 as this module is awaiting adequate guidance for its intended 

use on discrete background data sets.   

 
Recommendations and Suggestions in ProUCL: Not much guidance is available in the environmental 

literature including the available guidance documents to compute rigorous UCLs, UPLs, and UTLs for 

moderately skewed to highly skewed uncensored and left-censored data sets consisting of NDs with 

multiple DLs, a common occurrence in environmental data sets.  For uncensored positively skewed data 

sets, Singh, Singh, and Iaci (2002) and Singh and Singh (2003) performed extensive simulation 

experiments to compare the performances (in terms of coverage probabilities) of several UCL 

computation methods described in statistical and environmental literature. They noted that the optimal 

choice of a decision statistic (e.g., UCL 95) depends upon the sample size, data distribution and data 

skewness. Until 2006, not much guidance was available on how to compute UCL95 of mean and other 

upper limits (e.g., UPLs and UTLs) based upon skewed data sets consisting of NDs with multiple DLs. 

For data sets with NDs, Singh, Maichle, and Lee (EPA 2006) conducted a similar simulation study to 

compare the performances of the various estimation methods (in terms of bias in the mean estimate);  and 
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of some the UCL computation methods (in terms of coverage provided by a UCL). They demonstrated 

that the KM estimation method performs well in terms of bias in estimate of mean; and for skewed data 

sets, t-statistic, CLT, and the percentile bootstrap method based UCLs computed using KM estimates (and 

ROS estimates) underestimate the population mean. Based upon the findings summarized in Singh, 

Singh, and Iaci (2002) and Singh, Maichle, and Lee (2006), it is natural to state and assume the findings 

of the simulation studies performed on uncensored skewed data sets to compare the performances of the 

various UCL computation methods can be extended to skewed left-censored data sets. 

 

For data sets with and without NDs, ProUCL computes decision statistics including UCLs, UPLs, and 

UTLs using several parametric and nonparametric methods covering a wide-range of sample size, data 

variability and skewness. Using the results and findings summarized in the literature cited above, based 

upon the sample size, data distribution, and data skewness, some modules of ProUCL make suggestions 

about using a decision statistic to estimate population parameters of interest (e.g., EPC). The 

recommendations made in ProUCL are based upon the extensive experience of the developers in 

environmental statistical methods, published literature (e.g., Efron and Tibshirani, 1993; Hall, 1988; 

Singh, Singh, and Engelhardt 1997; Singh, Singh, and Iaci 2002; and Singh, Maichle, and Lee 2006) and 

procedures described in the various EPA guidance documents (EPA [1992a, 1992b 2002a, 2002b, 2006b, 

2009, 2009a, 2009b]). Based upon the conceptual site model (CSM), expert site and regional knowledge, 

the project team should make the final decision regarding using or not using the suggestions made by 

ProUCL. If deemed necessary, the project team may want to consult a statistician.  

 

Even though, ProUCL 5.0 has been developed using limited government funding, for data sets with and 

without NDs, ProUCL 5.0 provides many statistical and graphical methods described in the EPA 

documents cited above. However, one may not compare the availability of methods in ProUCL 5.0 with 

methods available in the commercial software packages such as SAS and Minitab 16. For example, trend 

tests correcting for seasonal/spatial variations are not available in the ProUCL software. For those 

methods the user is referred to the commercial software packages. As mentioned earlier, it is 

recommended to supplement test results (e.g., two-sample test) with graphical displays (e.g., Q-Q plots, 

side-by-side box plots); especially when data sets consist of NDs and outliers. With the inclusion of BISS 

module, Oneway ANOVA, Regression and Trend tests, and the user-friendly DQOs based Sample Size 

determination modules, ProUCL represents a comprehensive statistical software package equipped with 

statistical methods and graphical tools needed to address many environmental sampling and statistical 

issues as described in the various CERCLA (EPA 1989a, 1992a, 2002a, 2002b, 2006a, 2006b), 

MARSSIM (EPA 2000), and RCRA (EPA 1989b, 1992b, 2002c, 2009) guidance documents.  

 

Finally, the users and practitioners are cautioned about the use of methods and suggestions described in 

some recent environmental literature. For example, many decision statistics (e.g., UCLs, UPLs, UTLs,) 

computed using the methods (e.g., percentile bootstrap, statistics using KM estimates and t-critical 

values) described in Helsel (2012) will fail to provide desired coverage to the environmental parameters 

of interest (mean, upper percentile) of moderately skewed to highly skewed populations; and conclusions 

derived based upon those decisions statistics may lead to incorrect conclusions which may not be cost-

effective or protective of human health and the environment.  
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ProUCL 5.0 User Guide 

In addition to this Technical Guide, a User Guide also accompanies the ProUCL 5.0 software, providing 

details of using the statistical and graphical methods incorporated in ProUCL 5.0.00. The User Guide 

provides details about the input and output operations that can be performed using ProUCL 5.0. The User 

guide also provides details about saving edited input files, output Excel-type spreadsheets and graphical 

displays generated by ProUCL 5.0.  
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CHAPTER 1 
 

Guidance on the Use of Statistical Methods in 
ProUCL Software  

 
Decisions based upon statistics computed using discrete data sets of small sizes (e.g., < 6) cannot be 

considered reliable enough to make remediation decisions that affect human health and the environment. 

For example, a background data set of size less than 6 is not large enough to characterize background 

population, to compute background threshold values (BTV) estimates, or to perform background versus 

site comparisons. Several EPA guidance documents (e.g., MARSSIM 2000; EPA [2006a, 2006b]) 

describe data quality objectives (DQOs) and minimum sample size computations needed to address 

statistical issues associated with the various environmental applications. In order to obtain reliable results 

using statistical methods, an adequate amount of data should be collected using desired DQOs 

(confidence coefficient, decision error rates). The Sample Sizes module of ProUCL computes DQOs 

based minimum sample sizes needed to use the statistical methods described in the various guidance 

documents.  In some cases, it may not be possible (e.g., due to resource constraints) to collect DQOs 

based number of samples; under these circumstances one can use the Sample Sizes module to assess the 

power of the test statistic used in retrospect.  Some suggestions about the minimum sample size 

requirements needed to use statistical methods to estimate environmental parameters of interest such as 

exposure point concentration (EPC) terms and BTVs, to compare site data with background data or with 

some pre-established screening levels (e.g., action levels [ALs] , compliance limits [CLs]), are provided in 

this chapter.  It is noted that similar minimum sample size suggestions made by ProUCL (EPA 2007, 

2009a, 2009b) have been made in some other guidance documents including the RCRA Guidance 

Document (EPA 2009).  

 

This chapter also describes the differences between the various statistical upper limits including upper 

confidence limits (UCLs) of the mean, upper prediction limits (UPLs) for future observations, and upper 

tolerance intervals (UTLs) often used to estimate the environmental parameters of interest including EPC 

terms and BTVs.  The use of a statistical method depends upon the environmental parameter(s) being 

estimated or compared with. The measures of central tendency (e.g., means, medians, or their UCLs) are 

used to compare site mean concentrations with a cleanup standard, Cs, also representing some central 

tendency measure of a reference area or some other known threshold representing a measure of central 

tendency. The upper threshold values, such as the CLs, alternative concentration limits (ACL), or not-to-

exceed values, are used when individual point-by-point onsite observations are compared with those 

threshold values. It should be noted that depending upon whether the environmental parameters (e.g., 

BTVs, not-to-exceed value, or EPC term) are known or unknown, different statistical methods with 

different data requirements are needed to compare site concentrations with pre-established (known) or 

estimated (unknown) standards and BTVs. Several upper limits, and single and two sample hypotheses 

testing approaches, for both full-uncensored and left-censored data sets are available in the ProUCL 

software package to perform the comparisons described above. 

1.1 Background Data Sets 

Based upon the conceptual site model (CSM), the project team familiar with the site selects background 

or reference areas. Depending upon the site activities and the pollutants, the background area can be site-

specific or a general reference area. An appropriate random sample of independent observations (e.g., 

i.i.d) should be collected from the background area. A defensible background data set represents a 

ñsingleò population possibly without any outliers.  In a background data set, in addition to reporting 
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and/or laboratory errors, statistical outliers may also be present. A few elevated statistical outliers present 

in a background data set may actually represent potentially contaminated locations belonging to an 

impacted site areas and/or possibly from other polluted site(s); those elevated outliers may not be coming 

from the main dominant background population under evaluation. Since the presence of outliers in a data 

set tends to yield distorted (incorrect and misleading) values of the decision making statistics (e.g., UCLs, 

UPLs and UTLs), elevated outliers should not be included in background data sets and estimation of 

BTVs.  The objective here is to compute background statistics based upon the majority of the data set 

representing the main dominant background population, and not to accommodate a few low probability 

high outliers (e.g., coming from extreme tails of the data distribution) that may also be present in the 

background data set. The occurrence of elevated outliers is common when background samples are 

collected from various onsite areas (e.g., large Federal Facilities). The proper disposition of outliers, to 

include or not include them in statistical computations, should be decided by the project team. The project 

team may want to compute decision statistics with and without the outliers to evaluate the influence of 

outliers on the decision making statistics.  

 

A couple of classical outlier tests (Dixon and Rosner tests) are available in ProUCL. Since both of these 

classical tests suffer from masking effects (e.g., some extreme outliers may mask the occurrence of other 

intermediate outliers), it is suggested that these classical outlier tests be supplemented with graphical 

displays such as a box plot and a Q-Q plot. The use of exploratory graphical displays helps in determining 

the number of outliers potentially present in a data set. The use of graphical displays also helps in 

identifying extreme high outliers as well as intermediate and mild outliers. The use of robust and resistant 

outlier identification procedures (Singh and Nocerino, 1995, Rousseeuw and Leroy, 1987) is 

recommended when multiple outliers are present in a data set. Those methods are beyond the scope of 

ProUCL 5.0.  However, several robust outlier identification methods are available in the Scout 2008 

version 1.0 software package (EPA 2009). 

An appropriate background data set of a reasonable size (preferably computed using DQOs processes) is 

needed to represent a background area and to compute upper limits (e.g., estimates of BTVs) based upon 

background data sets and also to compare site and background data sets using hypotheses testing 

approaches. At the minimum, a background data set should have at least 10 (more observations are 

preferable) observations to perform background evaluations. 

1.2 Site Data Sets 

A data set collected from a site population (e.g., area of concern [AOC], exposure areas [EA], decision 

unit [DU], group of monitoring wells [MWs]) should be representative of the site area under 

investigation. Depending upon the site areas under investigation, different soil depths and soil types may 

be considered as representing different statistical populations. In such cases, background versus site 

comparisons may have to be conducted separately for each of those site sub-populations (e.g., surface and 

sub-surface layers of an AOC, clay and sandy site areas). These issues, such as comparing depths and soil 

types, should also be considered in planning stages when developing sampling designs to collect samples 

from the various site AOCs. Specifically, the availability of an adequate amount of representative site 

data is required from each of those site sub-populations/strata defined by sample depths, soil types, and 

the various other characteristics. For detailed guidance on soil sample collections, the reader is referred to 

Gerlach and Nocerino (EPA, 2003).  

 

Site data collection requirements depend upon the objective(s) of the study. Specifically, in background 

versus site comparisons, site data are needed to perform: 
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¶ point-by-point onsite comparisons with pre-established action levels or estimated BTVs. 

Typically, this approach is used when only a small number (e.g., < 6) of onsite observations are   

compared with a BTV or some other not-to-exceed value.  If many onsite values need to be 

compared with a BTV, it is recommended to use UTL or upper simultaneous limit (USL) to 

control the false pos1itive error rate (Type I Error Rate). Alternatively, one can use hypothesis 

testing approaches provided enough observations (at least 10, more are preferred) are available. 

 

¶ single-sample hypotheses tests to compare site data with a pre-established cleanup standards, Cs 

(e.g., representing a measure of central tendency); proportion test to compare site proportion of 

exceedances of an AL with a pre-specified allowable proportion, P0. These hypotheses testing 

approaches are used on site data when enough site observations are available. Specifically, when 

at least 10 (more are desirable) site observations are available; it is preferable to use hypotheses 

testing approaches to compare site observations with specified threshold values. The use of 

hypotheses testing approaches can control both types of error rates (Type 1 and Type 2) more 

efficiently than the point-by-point individual observation comparisons. This is especially true as 

the number of point-by-point comparisons increases. This issue is illustrated by the following 

table summarizing the probabilities of exceedances (false positive error rate) of the BTV (e.g., 

95
th
 percentile) by onsite observations, even when the site and background populations have 

comparable distributions. The probabilities of these chance exceedances increase as the site 

sample size increases. 

 

                  Sample Size                              Probability of Exceedance 

1     0.05 

2     0.10 

5     0.23 

8     0.34 

10     0.40 

12     0.46 

64     0.96 

 

¶ two-sample hypotheses tests to compare site data distribution with background data distribution 

to determine if the site concentrations are comparable to background concentrations. An adequate 

amount of data needs to be made available from the site as well as the background populations. It 

is preferable to collect at 10 observations from each population under comparison. 

 

Notes: From a mathematical point of view, one can perform hypothesis tests on data sets consisting of 

only 3-4 data values; however, the reliability of the test statistics (and the conclusions derived) thus 

obtained is questionable. In these situations it is suggested to supplement the test statistics decisions by 

graphical displays. 

1.3 Discrete Samples or Composite Samples? 

ProUCL can be used on discrete data sets as well as on composite data sets. However, in a data set 

(background or site), collected samples should be either all discrete or all composite. In general, both 

discrete and composite site samples may be used for individual point-by-point site comparisons with a 

threshold value, and for single and two-sample hypotheses testing applications.  

 

¶ When using a single-sample hypothesis testing approach, site data can be obtained by collecting 

all discrete or all composite samples. The hypothesis testing approach is used when many (e.g., Ó 
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10) site observations are available. Details of the single-sample hypothesis approaches are widely 

available in EPA guidance documents (MARSSIM, 2000; EPA [1989a 2006b]). Several single-

sample hypotheses testing procedures available in ProUCL are described in Chapter 6 of the 

ProUCL 5.0 Tech Guide. 

 

¶ If a two-sample hypothesis testing approach is used to perform site versus background 

comparisons, then samples from both of the populations should be either all discrete samples, or 

all composite samples. The two-sample hypothesis testing approaches are used when many (e.g., 

at least 10) site, as well as background, observations are available. For better results with higher 

statistical power, the availability of more observations perhaps based upon an appropriate DQOs 

process (EPA 2006a) is desirable.  Several two-sample hypotheses tests available in ProUCL 5.0 

are described in Chapter 6 of the ProUCL 5.0 Tech Guide.  

1.4 Upper Limits and Their Use 

The computation and use of statistical limits depend upon their applications and the parameters (e.g., EPC 

term, BTVs) they are supposed to be estimating. Depending upon the objective of the study, a pre-

specified cleanup standard, Cs, can be viewed as to represent: 1) an average (or median) constituent 

concentration, m0; or 2) a not-to-exceed upper threshold concentration value, A0. These two threshold 

values, an average value, m0, and a not-to-exceed value, A0, represent two significantly different 

parameters, and different statistical methods and limits are used to compare the site data with these two 

very different threshold values. Statistical limits, such as an UCL of the population mean, an UPL for an 

independently obtained ñsingleò observation, or independently obtained ñkò observations (also called 

future k observations, next k observations, or k different observations), upper percentiles, and UTLs are 

often used to estimate the environmental parameters: an EPC term (m0) and a BTV (A0). A new upper 

limit, USL has been included in ProUCL 5.0 which may be used to estimate a BTV based upon a well-

established background data set without any outliers. 

  

It is important to understand and note the differences between the uses and numerical values of these 

statistical limits so that they can be properly used. Specifically, the differences between UCLs and UPLs 

(or upper percentiles), and UCLs and UTLs should be clearly understood and acknowledged. A UCL with 

a 95% confidence limit (UCL95) of the mean represents an estimate of the population mean (measure of 

the central tendency), whereas a UPL95, a UTL95%-95% (UTL95-95), and an upper 95
th
 percentile 

represent estimates of a threshold from the upper tail of the population distribution such as the 95
th
 

percentile.  Here, UPL95 represents a 95% upper prediction limit, and UTL95-95 represents a 95% 

confidence limit of the 95
th
 percentile. For mildly skewed to moderately skewed data sets, the numerical 

values of these limits tend to follow the order given as follows: 

 

Sample Mean  ¢ UCL95 of Mean  ¢  Upper 95
th
 Percentile  ¢  UPL95 of a Single Observation ¢ UTL95-

95  

 

For highly skewed data sets, these limits may not follow the order described above. This is especially true 

when the upper limits are computed based upon a lognormal distribution (Singh, Singh, and Engelhardt, 

1997). It is well known that a lognormal distribution based H-UCL95 (Landôs UCL95) often yields 

unstable and impractically large UCL values. An H-UCL95 often becomes larger than UPL95 and even 

larger than a UTL 95%-95% and the largest sample value. This is especially true when dealing with 

skewed data sets of smaller sizes. Moreover, it should also be noted that in some cases, a H-UCL95 

becomes smaller than the sample mean, especially when the data are mildly skewed and the sample size is 
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large (e.g., > 50, 100). The differences among the various upper limits discussed above are illustrated by 

the following example. 

 

Example 1.1. Consider a background real data set collected from a Superfund site (EPA 2002b). The data 

set has several inorganic COPC, including aluminum, arsenic, chromium, iron, and lead. Iron 

concentrations follow a normal distribution. Some upper limits for the iron data set are summarized as 

follows. However, the various upper limits do follow the order as described above. 

 

Table 1-1. Computation of Upper Limits for Iron (Normally D istributed)  

 

Mean Median Min  Max UCL95 

UPL95 for a 

Single 

Observation 

UPL95 for 4 

Observations 
UTL95-95 

95% 

Upper 

Percentile 

9618 9615 3060 18700 11478 18145 21618 21149 17534 

 

A brief discussion about the differences between the applications and uses of the various statistical limits 

is provided below.  

 

¶ A UCL represents an average value that is compared with a threshold value also representing an 

average value (pre-established or estimated), such as a mean Cs. For example, a site 95% UCL 

exceeding a Cs, may lead to the conclusion that the cleanup standard, Cs has not been attained by the 

average site area concentration. It should also be noted that UCLs of means are typically computed 

based upon the site data set. 

 

¶ A UCL represents a ñcollectiveò measure of central tendency, and it is not appropriate to compare 

individual site observations with a UCL. Depending upon data availability, single or two-sample 

hypotheses testing approaches are used to compare a site average or a site median with a specified or 

pre-established cleanup standard (single-sample hypothesis), or with the background population 

average or median (two-sample hypothesis). 

 

¶ A UPL, an upper percentile, or an UTL represents an upper limit to be used for point-by-point 

individual site observation comparisons. UPLs and UTLs are computed based upon background data 

sets, and point-by-point onsite observations are compared with those limits. A site observation 

exceeding a background UTL may lead to the conclusion that the constituent is present at the site at 

levels greater than the background concentrations level.  

 

¶ When enough (e.g., at least10) site observations are available, it is preferable to use hypotheses 

testing approaches. Specifically, single-sample hypotheses testing (comparing site to a specified 

threshold) approaches should be used to perform site versus a known threshold comparison; and two-

sample hypotheses testing (provided enough background data are also available) approaches should 

be used to perform site versus background comparison. Several parametric and nonparametric single 

and two-sample hypotheses testing approaches are available in ProUCL 5.0. 

 

It is re-emphasized that only averages should be compared with averages or UCLs, and individual site 

observations should be compared with UPLs, upper percentiles, UTLs, or USLs. For example, the 

comparison of a 95% UCL of one population (e.g., site) with a 90% or 95% upper percentile of another 

population (e.g., background) cannot be considered fair and reasonable as these limits (e.g., UCL and 

UPL) estimate and represent different parameters.  
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1.5 Point-by-Point Comparison of Site Observations with BTVs, Compliance Limits, 

and Other Threshold Values 

The point-by-point observation comparison method is used when a small number (e.g., < 6) of site 

observations are compared with pre-established or estimated BTVs, screening levels, or preliminary 

remediation goals (PRGs). Typically, a single exceedance of the BTV by an onsite (or a monitoring well) 

observation may be considered as an indication of the presence of contamination at the site area under 

investigation. The conclusion of an exceedance by a site value is sometimes confirmed by re-sampling 

(taking a few more collocated samples) that site location (or a monitoring well) exhibiting constituent 

concentration in excess of the BTV. If all collocated (or collected during the same time period) sample 

observations collected from the same site location (or well) exceed the BTV or PRG, then it may be 

concluded that the location (well) requires further investigation (e.g., continuing treatment and 

monitoring) and cleanup.  

 

When BTV constituent concentrations are not known or pre-established, one has to collect or extract a 

background data set of an appropriate size that can be considered representing the site background. 

Statistical upper limits are computed using the background data set thus obtained, which are used as 

estimates of BTVs. To compute reasonably reliable estimates of BTVs, enough background observations 

(minimum of 10) should be collected, perhaps using an appropriate DQOs process as described in EPA 

(2006a) and MARSSIM (2000). Several statistical limits listed above are used to estimate the BTVs based 

upon a defensible (free of outliers, representing the background population) background data set of an 

adequate size.  

 

The point-by-point comparison method is also useful when quick turnaround comparisons are required in 

real time. Specifically, when decisions have to be made in real time by a sampling/screening crew, or 

when only a few site samples are available, then individual point-by-point site concentrations are 

compared either with pre-established cleanup goals or with estimated BTVs. The sampling crew can use 

these comparisons to: 1) screen and identify the contaminants/constituents of potential concern (COPCs), 

2) identify the potentially polluted site areas of concern (AOCs), or 3) continue or stop remediation or 

excavation at an onsite area of concern. 

 

If a larger number of samples (e.g., >10) are available from the various onsite locations representing the 

site area under investigation, then the use of hypotheses testing approaches (both single-sample and a 

two-sample) is preferred. The use of hypothesis testing approaches control the error rates more tightly and 

efficiently than the individual point-by-point site comparisons. 

1.6 Hypothesis Testing Approaches and Their Use 

Both single-sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 

polluted sites, and also to compare constituent concentrations of two (e.g., site versus background) or 

more populations (e.g., MWs).  

1.6.1 Single Sample Hypotheses (Pre-established BTVs and Not-to-Exceed Values are Known) 

When pre-established BTVs are used such as the U.S. Geological Survey (USGS) background values 

(Shacklette and Boerngen, 1984), or thresholds obtained from similar sites, there is no need to extract, 

establish, or collect a background data set. When the BTVs and cleanup standards are known, one-sample 

hypotheses are used to compare site data (provided enough site data are available) with known and pre-

established threshold values. It is suggested that the project team determine (e.g., using DQOs) or decide 
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(depending upon resources) about the number of site observations that should be collected and compared 

with the ñpre-establishedò standards before coming to a conclusion about the status (clean or polluted) of 

the site AOCs. As mentioned earlier, when the number of available site samples is less than 6, one might 

perform point-by-point site observation comparisons with a BTV; and when enough site observations (at 

least 10) are available, it is desirable to use single-sample hypothesis testing approaches. Depending upon 

the parameter (e.g., the average value, m0, or a not-to-exceed value, A0), represented by the known 

threshold value, one can use single-sample hypotheses tests for population mean or median (t-test, sign 

test), or use single-sample tests for proportions and percentiles. The details of the single-sample 

hypotheses testing approaches can be found in EPA (2006b) guidance document and in Chapter 6 of this 

Technical Guide.  

 

One-Sample t-Test: This test is used to compare the site mean, m, with some specified cleanup standard, 

Cs, where the Cs represents an average threshold value, m0. The Studentôs t-test (or a UCL of mean) is 

used (assuming normality of site data set or when sample size is large such as larger than 30, 50) to verify 

the attainment of cleanup levels at a polluted site after some remediation activities. 

 

One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests and can 

also handle ND observations, provided all NDs (e.g., associated detection limits) fall below the specified 

threshold value, Cs. These tests are used to compare the site location (e.g., median, mean) with some 

specified Cs representing a similar location measure. 

 

One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a PRG or 

a BTV represents an upper threshold value of a constituent concentration distribution rather than the mean 

threshold value, m0, then a test for proportion or a test for percentile (or equivalently a UTL 95-95 UTL 

95-90) may be used to compare site proportion (or site percentile) with the specified threshold or action 

level, A0.  

1.6.2 Two-Sample Hypotheses (BTVs and Not-to-Exceed Values are Unknown)  

When BTVs, not-to-exceed values, and other cleanup standards are not available, then site data are 

compared directly with the background data. In such cases, two-sample hypothesis testing approaches are 

used to perform site versus background comparisons. Note that this approach can be used to compare 

concentrations of any two populations including two different site areas or two different monitoring wells 

(MWs). In order to use and perform a two-sample hypothesis testing approach, enough data should be 

available from each of the two populations. Site and background data requirements (e.g., based upon 

DQOs) to perform two-sample hypothesis test approaches are described in EPA (2002b, 2006a, 2006b), 

MARSSIM (2000) and also in Chapter 6 of the ProUCL 5.0 Technical Guide. While collecting site and 

background data, for better representation of populations under investigation, one may also want to 

account for the size of the background area (and site area for site samples) in sample size determination. 

That is, a larger number (>15-20) of representative background (and site) samples should be collected 

from larger background (and site) areas; every effort should be made to collect as many samples as 

determined by the DQOs based sample sizes. 

The two-sample (or more) hypotheses approaches are used when the site parameters (e.g., mean, shape, 

distribution) are being compared with the background parameters (e.g., mean, shape, distribution). The 

two-sample hypotheses testing approach is also used when the cleanup standards or screening levels are 

not known a priori. Specifically, in environmental applications, two-sample hypotheses testing 

approaches are used to compare average or median constituent concentrations of two or more populations. 

To derive reliable conclusions with higher statistical power based upon hypothesis testing approaches, an 
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adequate amount of data (e.g., minimum of 10 samples) should be collected from all of the populations 

under investigation. 

 

The two-sample hypotheses testing approaches incorporated in ProUCL 5.0 are listed as follows: 

 

1. Student t-test (with equal and unequal variances) ï Parametric test assumes normality 

2. Wilcoxon-Mann-Whitney (WMW) test ï Nonparametric test handles data with NDs with 

one DL - assumes two populations have comparable shapes and variability  

3. Gehan test ï Nonparametric test handles data sets with NDs and multiple DLs - assumes 

comparable shapes and variability   

4. Tarone-Ware (T-W) test ï Nonparametric test handles data sets with NDs and multiple 

DLs - assumes comparable shapes and variability 

 

The Gehan and Tarone-Ware tests are meant to be used on left-censored data sets with multiple detection 

limits (DLs).  For best results, the samples collected from the two (or more) populations should all be of 

the same type obtained using similar analytical methods and apparatus; the collected site and background 

samples should be all discrete or all composite (obtained using the same design and pattern), and be 

collected from the same medium (soil) at similar depths (e.g., all surface samples or all subsurface 

samples) and time (e.g., during the same quarter in groundwater applications) using comparable 

(preferably same) analytical methods. Good sample collection methods and sampling strategies are given 

in EPA (1996, 2003) guidance documents. 

 

Notes: ProUCL 5.0 (and previous versions) has been developed using limited government funding. 

ProUCL 5.0 is equipped with statistical and graphical methods needed to address many environmental 

sampling and statistical issues as described in the various CERCLA, MARSSIM, and RCRA documents 

cited earlier. However, one may not compare the availability of methods in ProUCL 5.0 with methods 

incorporated in commercial software packages such as SAS and Minitab 16. Not all methods available in 

the statistical literature are available in ProUCL.  

1.7 Minimum Sample Size Requirements and Power Evaluations 

Due to resource limitations, it may not be possible (nor needed) to sample the entire population (e.g., 

background area, site area, AOCs, EAs) under study. Statistics is used to draw inference(s) about the 

populations (clean, dirty) and their known or unknown parameters (e.g., mean, variance, upper threshold 

values) based upon much smaller data sets (samples) collected from those populations. To determine and 

establish BTVs and site specific screening levels, defensible data set(s) of appropriate size(s) need to be 

collected from background areas (e.g., site-specific, general reference area, or historical data). The project 

team and site experts should decide what represents a site population and what represents a background 

population. The project team should determine the population area and boundaries based upon all current 

and future uses, and the objectives of data collection.  Using the collected site and background data sets, 

statistical methods supplemented with graphical displays are used to perform site versus background 

comparisons. The test results and statistics obtained by performing such site versus background 

comparisons are used to determine if the site and background level constituent concentrations are 

comparable; or if the site concentrations exceed the background threshold concentration level; or if an 

adequate amount of remediation approaching the BTV or some cleanup level has been performed at 

polluted site AOCs.  

 

To perform these statistical tests, one needs to determine the appropriate sample sizes that need to be 

collected from the populations (e.g., site and background) under investigation using appropriate DQOs 
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processes (EPA [2006a, 2006b]; MARSSIM, 2000). ProUCL has the Sample Sizes module which can be 

used to develop DQOs based sampling designs needed to address statistical issues associated with the 

various polluted sites projects. ProUCL provides user friendly options to enter the desired/pre-specified 

values of decision parameters (e.g., Type I and Type II error rates) to determine minimum sample sizes 

for the selected statistical applications including: estimation of mean, single and two-sample hypothesis 

testing approaches, and acceptance sampling. Sample size determination methods are available for the 

sampling of continuous characteristics (e.g., lead or Radium 226), as well as for attributes (e.g., 

proportion of occurrences exceeding a specified threshold). Both parametric (e.g., t-tests) and 

nonparametric (e.g., Sign test, test for proportions, WRS test) sample size determination methods are 

available in ProUCL 5.0. ProUCL 5.0 also has sample size determination methods for acceptance 

sampling of lots of discrete objects such as a lot of drums containing hazardous waste (e.g., RCRA 

applications, EPA 2002c).  

 

However, due to budget constraints, it may not be possible to collect the same number of samples as 

determined by using a DQOs process. For example, the data might have already been collected (often is 

the case) without using a DQOs process, or due to resource constraints, it may not be possible to collect 

as many samples as determined by using a DQOs based sample size formula. In practice, the project team 

and the decision makers may decide not to collect enough background samples. It is suggested to collect 

at least10 background observations before using statistical methods to perform background evaluations 

based upon data collected using discrete samples. The minimum sample size recommendations described 

here are useful when resources are limited, though it may not be possible to collect as many background 

and site samples as computed using DQOs based sample size determination formulae. In case data are 

collected without using a DQOs process, the Sample Sizes module can be used to assess  the power of the 

test statistic in retrospect. Specifically, one can use the standard deviation of the computed test statistic 

(EPA 2006b) and compute the sample size (e.g., using Sample Size module of ProUCL) needed to meet 

the desired DQOs. If the computed sample size is greater than the size of the data set used, the project 

team may want to collect additional samples to meet the desired DQOs.  

 

Notes: From a mathematical point of view, the statistical methods incorporated in ProUCL and described 

in this guidance document to estimate EPC terms and BTVs, and compare site versus background 

concentrations can be performed on small site and background data sets (e.g., of sizes as small as 3). 

However, those statistics may not be considered representative and reliable enough to make important 

cleanup and remediation decisions. It is recommended not to use those statistics to draw cleanup and 

remediation decisions potentially impacting human health and the environment. The minimum sample 

size recommendation (at least 10 observations) may be used only when data sets of size determined by a 

DQOs process (EPA, 2006) cannot be collected. Some of the recent guidance documents (e.g., EPA 2009) 

are also suggesting collecting a minimum of about 10 samples in the circumstance that data cannot be 

collected using a DQOs based process. 

 

¶ To allow the users to compute decision statistics based upon composite data collected using the 

Incremental Sampling Methodology (ITRC, 2012), ProUCL 5.0 will compute decision statistics 

(e.g., UCLs, UPLs, UTLs) based upon samples of sizes as small as 3. The user is referred to the 

ITRC ISM Tech Reg Guide (2012) to determine which UCL  (e.g., Student's t-UCL or 

Chebyshev UCL) should be used to estimate the EPC term. 
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1.7.1 Sample Sizes for Bootstrap Methods  

Several nonparametric methods including bootstrap methods to compute UCL, UTL, and other limits for 

both full-uncensored data sets and left-censored data sets with NDs are available in ProUCL 5.0. 

Bootstrap resampling methods are useful when not too few (e.g., < 15-20) and not too many (e.g., > 500-

1000) observations are available. For bootstrap methods (e.g., percentile method, BCA bootstrap method, 

bootstrap-t method), a large number (e.g., 1000, 2000) of bootstrap resamples (with replacement) are 

drawn with replacement from the same data set. Therefore, to obtain bootstrap resamples with at least 

some distinct values (so that statistics can be computed from each resample), it is suggested that a 

bootstrap method should not be used when dealing with small data sets of sizes less than 15-20. Also, it is 

not necessary to bootstrap a large data set of size greater than 500 or 1000; that is when a data set of a 

large size (e.g., > 500) is available, there is no need to obtain bootstrap resamples to compute statistics of 

interest (e.g., UCLs). One can simply use a statistical method on the original large data set. Moreover, 

bootstrapping a large data set of size greater than 500 or 1000 will be time consuming. 

1.8 Statistical Analyses by a Group ID  

The analyses of data categorized by a group ID variable such as: 1) Surface vs. Subsurface; 2) AOC1 vs. 

AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are common in 

environmental and various other applications. ProUCL 5.0 offers this option for data sets with and 

without NDs. The Group Option provides a useful tool to perform various statistical tests, methods and 

generate graphical displays separately for each of the group (samples from different populations) that may 

be present in a data set. The graphical displays (e.g., box plots, (quantile-quantile) Q-Q plots) and 

statistics (e.g., background statistics, UCLs, hypotheses tests) of interest can be computed separately for 

each group by using this option.  Moreover, using the Group Option, graphical methods can display 

multiple graphs (e.g., Q-Q plots) on the same graph providing graphical comparison of multiple groups. 

 

It should be pointed out that it is the usersô responsibility to provide adequate amount of data to perform 

the group operations. For an example, if the user desires to produce a graphical Q-Q plot (e.g., using only 

detected data) with regression lines displayed, then there should be at least two detected data values (to 

compute slope, intercept, standard deviation [sd]) in the data set. Similarly if the graphs are desired for 

each group specified by the group ID variable, there should be at least two observations in each group 

specified by the group variable. ProUCL generates a warning message (colored orange) in the lower Log 

Panel of the ProUCL 5.0 screen.  

1.9 Statistical Analyses for Many Constituents/Variables   

ProUCL software can process multiple analytes/variables simultaneously in a user friendly manner ï an 

option not available in other software packages such as Minitab 16 (2012), NADA for R (Helsel, 2013).  

This option is very useful when one has to process multiple variables and compute decision statistics 

(e.g., UCLs, UPLs, and UTLs) and test statistics (e.g., ANOVA test, trend test) for those variables. It is 

the userôs responsibility to make sure that each selected variable has an adequate amount of data so that 

ProUCL can perform the selected statistical method correctly. ProUCL displays warning messages when 

a selected variable does not have enough data needed to perform the selected statistical method. 
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1.10 Use of Maximum Detected Value as Estimates of Upper Limits 

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is 

especially true when the sample size is small such as < 5, or when a UCL95 exceeds the maximum 

detected values (EPA, 1992a). Also, many times in practice, the BTVs and not-to-exceed values are 

estimated by the maximum detected value (e.g., nonparametric UTLs, USLs).  

1.10.1 Use of Maximum Detected Value to Estimate BTVs and Not-to-Exceed Values 

BTVs and not-to-exceed values represent upper threshold values from the upper tail of a data distribution; 

therefore, depending upon the data distribution and sample size, the BTVs and other not-to-exceed values 

may be estimated by the largest or the second largest detected value. A nonparametric UPL, UTL, and 

USL are often estimated by higher order statistics such as the maximum value or the second largest value 

(EPA 1992b, 2009). The use of higher order statistics to estimate the UTLs depends upon the sample size. 

For an example, for data sets of size: 1) 59 to 92 observations, a nonparametric UTL95-95 is given by the 

maximum detected value; 2) 93 to 123 observations, a nonparametric UTL95-95 is given by the second 

largest maximum detected value; and 3) 124 to 152 observations, a UTL95-95 is given by the third largest 

detected value in the sample, and so on.  

1.10.2 Use of Maximum Detected Value to Estimate EPC Terms  

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is 

especially true when the sample size is small such as < 5, or when a UCL95 exceeds the maximum 

detected values (EPA, 1992a). Specifically, the EPA (1992a) document suggests the use of the maximum 

detected value as a default value to estimate the EPC term when a 95% UCL (e.g., the H-UCL) exceeds 

the maximum value. ProUCL computes 95% UCLs of mean using several methods based upon normal, 

gamma, lognormal, and non-discernible distributions. In the past (e.g., EPA 1992), a lognormal 

distribution was used as the default distribution to model positively skewed environmental data sets; and 

only two methods were used to estimate the EPC term based upon: 1) normal distribution and Studentôs t-

statistic, and 2) lognormal distribution and Landôs H-statistic (1971, 1975). The use of the H-statistic 

often yields unstable and impractically large UCL95 of the mean (Singh, Singh, and Engelhardt, 1997; 

Singh, Singh, and Iaci, 2002). For skewed data sets of smaller sizes (e.g., < 30, < 50,...), H-UCL often 

exceeds the maximum detected value. Since the use of a lognormal distribution has been quite common 

(e.g., suggested as a default model in a risk assessment guidance for Superfund [RAGS] document [EPA, 

1992a]), the exceedance of the maximum value by an H-UCL95 is frequent for many skewed data sets of 

smaller sizes (e.g., < 30, < 50).  These occurrences result in the possibility of using the maximum detected 

value as an estimate of the EPC term.  

 

It should be pointed out that in some cases, the maximum observed value actually might represent an 

impacted location. Obviously, it is not desirable to use a potential outlier representing an impacted 

location to estimate the EPC for an AOC.  The EPC term represents the average exposure contracted by 

an individual over an EA during a long period of time; the EPC term should be estimated by using an 

average value (such as an appropriate 95% UCL of the mean) and not by the maximum observed 

concentration. One needs to compute an average exposure and not the maximum exposure. Singh and 

Singh (2003) studied the performance of the max test (using the maximum observed value to estimate the 

EPC)  via Monte Carlo simulation experiments. They noted that for skewed data sets of small sizes (e.g., 

< 10-20), even the max test does not provide the specified 95% coverage to the population mean, and for 

larger data sets it overestimates the EPC term, which may lead to unnecessary further remediation.  
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Today, several methods, some of which are described in EPA (2002a), are available in the various 

versions of ProUCL (e.g., ProUCL 3.00.02 [EPA 2004], ProUCL 4.0 [EPA 2007], ProUCL 4.00.05[EPA 

2009, 2010]) to estimate the EPC terms. For data sets with NDs, ProUCL 5.0 has some new UCL (and 

other limits) computation methods which were not available in earlier versions of ProUCL. It is unlikely 

that the UCLs based upon those methods will exceed the maximum detected value, unless some outliers 

are present in the data set.  

 

1.10.2.1 Chebyshev Inequality Based UCL95 
 

ProUCL 5.0 (and its earlier versions) displays a warning message when the suggested 95% UCL (e.g., 

Hallôs or bootstrap-t UCL with outliers) of the mean exceeds the detected maximum concentration.  

When a 95% UCL does exceed the maximum observed value, ProUCL recommends the use of an 

alternative UCL computation method based upon the Chebyshev inequality. One may use a 97.5% or 

99% Chebyshev UCL to estimate the mean of a highly skewed population. The use of the Chebyshev 

inequality to compute UCLs tends to yield more conservative (but stable) UCLs than other methods 

available in ProUCL software. In such cases, when the sample size is large (and other UCL methods such 

as the bootstrap-t method yield unrealistically high values due to presence of outlier(s)), one may want to 

use a 95% Chebyshev UCL or a Chebyshev UCL with lower confidence coefficient such as 90% as an 

estimate of the population mean, especially when the sample size is large (e.g., >100, 150). The detailed 

recommendations (as functions of sample size and skewness) for the use of those UCLs are summarized 

in various versions of ProUCL Technical Guides (EPA, 2004, 2007, 2009, and 2010d).  

Notes: It is recommended not to use the maximum observed value to estimate the EPC term representing 

the average exposure contracted by an individual over an EA. For the sake of interested users, ProUCL 

displays a warning message when the recommended 95% UCL (e.g., Hallôs bootstrap UCL) of the mean 

exceeds the observed maximum concentration. For such scenarios (when a 95% UCL does exceed the 

maximum observed value), an alternative 95% UCL computation method based upon Chebyshev 

inequality is recommended by the ProUCL software. 

1.11 Samples with Nondetect Observations 

ND observations are inevitable in most environmental data sets. Singh, Maichle, and Lee (EPA, 2006) 

studied the performances (in terms of coverages) of the various UCL95 computation methods including 

the simple substitution methods (such as the DL/2 and DL methods) for data sets with ND observations. 

They concluded that the UCLs obtained using the substitution methods, including the replacement of NDs 

by respective DL/2; do not perform well even when the percentage of ND observations is low, such as 

less than 5% to 10%. They recommended avoiding the use of substitution methods to compute UCL95 

based upon data sets with ND observations. 

1.11.1 Avoid the Use of DL/2 Method to Compute UCL95 

Based upon the results of the report by Singh, Maichle, and Lee (EPA, 2006), it is recommended to avoid 

the use of the DL/2 method to perform a GOF test, and to compute the summary statistics and various 

other limits (e.g., UCL, UPL, UTLs) often used to estimate the EPC terms and BTVs. Until recently, the 

DL/2 method has been the most commonly used method to compute the various statistics of interest for 

data sets with NDs. The main reason for this has been the lack of the availability of the other rigorous 

methods and associated software programs that can be used to estimate the various environmental 

parameters of interest. Today, several methods (e.g., using Kaplan-Meier [KM] estimates) including 

Chebyshev inequality and bootstrap methods with better performance are available that can be used to 
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compute the various upper limits of interest. Several of those parametric and nonparametric methods are 

available in ProUCL 4.0 and higher versions. It should be noted that the DL/2 method is included in 

ProUCL for historical reasons as it had been the most commonly used and recommended method until 

recently (EPA, 2006b). EPA scientists and several reviewers of the ProUCL software had suggested and 

requested the inclusion of DL/2 method in ProUCL for comparison and research purposes.  

 

Notes: Even though the DL/2 method (to compute UCLs, UPLs, and for goodness-of-fit [ GOF] tests) has 

been incorporated in ProUCL, its use is not recommended due to its poor performance. The DL/2 method 

has been retained in ProUCL 5.0 for historical and comparison purposes. NERL-EPA, Las Vegas strongly 

recommends avoiding the use of DL/2 method even when the % of NDs is as low as 5% to 10%.  

1.12 Samples with Low Frequency of Detection 

When all of the sampled values are reported as NDs, the EPC term and other statistical limits should also 

be reported as a ND value, perhaps by the maximum reporting limit (RL) or the maximum RL/2. 

Statistics (e.g., UCL95) computed based upon only a few detected values (e.g., < 4) cannot be considered 

reliable enough to estimate the EPC terms having potential impact on human health and the environment. 

When the number of detected values is small, it is preferable to use ad hoc methods rather than using 

statistical methods to compute the EPC terms and other upper limits. Specifically, it is suggested that for 

data sets consisting of less than 4 detects and for small data sets  (e.g., size < 10) with low detection 

frequency (e.g., < 10%), the project team and the decision makers together should decide on a site-

specific basis on how to estimate the average exposure (EPC term) for the constituent and area under 

consideration. For such data sets with low detection frequencies, other measures such as the median or 

mode represents better estimates (with lesser uncertainty) of the population measure of central tendency.  

 

Additionally, it is also suggested that when most (e.g., > 95%) of the observations for a constituent lie 

below the DLs, the sample median or the sample mode (rather than the sample average) may be used as 

an estimate the EPC term. Note that when the majority of the data are NDs, the median and the mode may 

also be represented by a ND value. The uncertainty associated with such estimates will be high. The 

statistical properties, such as the bias, accuracy, and precision of such estimates, would remain unknown. 

In order to be able to compute defensible estimates, it is always desirable to collect more samples.  

1.13 Some Other Applications of Methods in ProUCL 5.0  

In addition to performing background versus site comparisons for CERCLA and RCRA sites, and 

estimating the EPC terms in exposure and risk evaluation studies, the statistical methods as incorporated 

in ProUCL can be used to address other issues dealing with environmental investigations that are 

conducted at Superfund or RCRA sites.  

1.13.1 Identification of COPCs 

Risk assessors and remedial project managers (RPMs) often use screening levels or BTVs to identify the 

COPCs during the screening phase of a cleanup project to be conducted at a contaminated site. The 

screening for the COPCs is performed prior to any characterization and remediation activities that may 

have to be conducted at the site. This comparison is performed to screen out those constituents that may 

be present in the site medium of interest at low levels (e.g., at or below the background levels or some 

pre-established screening levels) and may not pose any threat and concern to human health and the 

environment. Those constituents may be eliminated from all future site investigations, and risk 

assessment and risk management studies.  
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To identify the COPCs, point-by-point site observations are compared with some pre-established soil 

screening levels (SSL), or estimated BTVs. This is especially true when the comparisons of site 

concentrations with screening levels or BTVs are conducted in real time by the sampling or cleanup crew 

onsite. The project team should decide the type of site samples (discrete or composite) and the number of 

site observations that should be collected and compared with the screening levels or the BTVs. In case 

BTVs or screening levels are not known, the availability of a defensible site-specific background or 

reference data set of reasonable size (e.g., at least 10) is required to obtain reliable estimates of BTVs and 

screening levels. The constituents with concentrations exceeding the respective screening values or BTVs 

may be considered COPCs, whereas constituents with concentrations (e.g., in all collected samples) lower 

than the screening values or BTVs may be omitted from all future evaluations. 

1.13.2 Identification of Non-Compliance Monitoring Wells  

In MW compliance assessment applications, individual (often discrete) constituent concentrations from a 

MW are compared with some pre-established limits such as an ACL or a maximum concentration limit 

(MCL). An exceedance of the MCL or the BTV by a MW concentration may be considered an indication 

of contamination in that MW. In such individual concentration comparisons, the presence of 

contamination (determined by an exceedance) may have to be confirmed by re-sampling from that MW. 

If concentrations of constituents in the original sample and re-sample(s) exceed the MCL or BTV, then 

that MW may require further scrutiny, perhaps triggering remediation remedies as determined by the 

project team. If the concentration data from a MW for about 4 to 5 continuous quarters (or some other 

designated time period determined by the project team) are below the MCL or BTV level, then that MW 

may be considered as complying with (achieving) the pre-established or estimated standards.  

1.13.3 Verification of the Attainment of Cleanup Standards, Cs 

Hypothesis testing approaches are used to verify the attainment of the cleanup standard, Cs, at polluted 

site AOCs after conducting remediation and cleanup at those site AOCs (EPA, 1989a, 1994). In order to 

assess the attainment of cleanup levels, a representative data set of adequate size perhaps obtained using 

the DQOs process (or a minimum of 10 observations should be collected) needs to be made available 

from the remediated/excavated areas of the site under investigation. The sample size should also account 

for the size of the remediated site areas: meaning that larger site areas should be sampled more (with more 

observations) to obtain a representative sample of the remediated site areas under investigation. Typically, 

the null hypothesis of interest is H0: Site Mean, ms Ó Cs versus the alternative hypothesis, H1: Site Mean, ms 

< Cs, where the cleanup standard, Cs, is known a priori.  

1.13.4 Using BTVs (Upper Limits) to Identify Hot Spots 

The use of upper limits (e.g., UTLs) to identify hot spot(s) has also been mentioned in the Guidance for 

Comparing Background and Chemical Concentrations in Soil for CERCLA Sites (EPA, 2002b). Point-by-

point site observations are compared with a pre-established or estimated BTV. Exceedances of the BTV 

by site observations may be considered as representing impacted locations with elevated concentrations 

(hot spots).  
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1.14 Some General Issues and Recommendations made by ProUCL 

Some general issues regarding the handling of multiple detection limits and field duplicates by ProUCL 

and recommendations made about various substitution and regression on order statistics (ROS) methods 

for data sets with NDs are described in the following sections. 

1.14.1 Multiple Detection Limits 

ProUCL 5.0 does not make distinctions between method detection limits (MDLs), adjusted MDLs, 

sample quantitation limits (SQLs), or DLs.  Multiple DLs in ProUCL mean different values of the DL. An 

indicator variable with of 0 (=nondetect) and 1(= detect) is assigned to each variable consisting of NDs. 

All ND observations in ProUCL are indentified by the value ó0ô of the indicator variable used in ProUCL 

to distinguish between detected (=1) and nondetected (=0) observations.  It is the usersô responsibility to 

supply correct numerical values for NDs (should be entered as the reported detection limit or RL values) 

and not as qualifiers (e.g., J, U, B, UJ, ...) for ND observations in the data set.  

1.14.2 ProUCL Recommendation about ROS Method and Substitution (DL/2) Method  

For data sets with NDs, ProUCL 5.0 can compute point estimates of population mean and standard 

deviation using the KM and ROS methods (and also using DL/2 method). The DL/2 method has been 

retained in ProUCL for historical and research purposes. ProUCL uses Chebyshev inequality, bootstrap 

methods, and normal, gamma, and lognormal distribution based equations on KM (or ROS) estimates to 

compute the various upper limits (e.g., UCLs, UTLs).  The simulation study conducted by Singh, Maichle 

and Lee (2006) demonstrated that the KM method yields accurate estimates of the population mean. They 

also demonstrated that  for moderately skewed to  highly skewed data sets, UCLs based upon KM 

estimates and BCA bootstrap (mild skewness),  KM estimates and Chebyshev inequality (moderate to 

high skewness), and KM estimates and bootstrap-t method (moderate to high skewness) yield better (in 

terms of coverage probability) estimates of EPC terms than other UCL methods based upon Student's t-

statistic on KM estimates, percentile bootstrap method on KM or ROS estimates.  

 

1.15 The Unofficial User Guide to ProUCL4 (Helsel and Gilroy, 2012) 

 
Several ProUCL users sent inquiries about the validity of the comments made about the ProUCL software 

in the Unofficial User Guide to ProUCL4 (Helsel and Gilroy, 2012) and in the Practical Stats webinar, 

"ProUCL v4: The Unofficial User Guide," presented by Dr. Helsel on October 15, 2012 (Helsel 2012a). 

Their inquiries led us to review comments made about the ProUCL v4 software and its associated 

guidance documents (EPA 2007, 2009a, 2009b, 2010c, and 2010d) in the Unofficial ProUCL v4 User 

Guide and in the webinar,  "ProUCL v4: The Unofficial User Guide". These two documents collectively 

are referred to as the Unofficial ProUCLv4 User Guide in this ProUCL document. The pdf document 

describing the material presented in the Practical Stats Webinar (Helsel, 2012a) was downloaded from the 

http://www.practicalstats.com website. 

 

In the "ProUCL v4: The Unofficial User Guide", comments have been made about  the software and its 

guidance documents, therefore, it is appropriate to address those comments in the present ProUCL 

guidance document. It is necessary to provide the detailed response to comments made in the Unofficial 

ProUCL v4 User Guide to assure that: 1) rigorous statistical methods are used to compute the decision 

making statistics; and 2) the methods incorporated in ProUCL software are not misrepresented and 

misinterpreted.  Some general responses and comments about the material presented in the Practical Stats 

webinar and in the Unofficial User Guide to ProUCLv4 are described as follows. Specific comments and 
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responses are also considered in the respective chapters of ProUCL 5.0 Technical and User Guides. The 

detailed responses to the comments made about the ProUCL software in the Unofficial ProUCL v4 User 

Guide are provided elsewhere.  

 

ProUCL is a freeware software package which has been developed under limited government funding to 

address statistical issues associated with various environmental site projects.  Not all statistical methods 

(e.g., Levene test) described in the statistical literature have been incorporated in ProUCL. One may not 

compare ProUCL with the commercial software packages which are expensive and not as easy to use as 

the ProUCL software to address environmental statistical issues. The existing and some new statistical 

methods based upon the research conducted by ORD-NERL, EPA Las Vegas during the last couple of 

decades have been incorporated in ProUCL to address the statistical needs of the various environmental 

site projects and research studies.  Some of those new methods may not be available in text books, in the 

library of programs written in R-script, and in commercial software packages. However, those methods 

are described in detail in the cited published literature and also in the ProUCL Technical Guides (e.g., 

EPA [2007, 2009a, 2009b, 2010c and 2010d]). Even though for uncensored data sets, programs to 

compute gamma distribution based UCLs and UPLs are available in R Script, programs to compute a 

95% UCL of mean based upon a gamma distribution on KM estimates are not easily available in 

commercial software packages and in R script. 

 

¶ In the Unofficial ProUCL v4 User Guide, several statements have been made about percentiles. There 

are several ways to compute percentiles. Percentiles computed by ProUCL may or may not be 

identical (don't have to be) to percentiles computed by NADA for R (Helsel, 2013) or described in 

Helsel and Gilroy (2012). To address users' requests, ProUCL 4.1 (2010) and its higher versions 

compute percentiles that are comparable to the percentiles computed by Excel 2003 and higher 

versions.  

 

¶ The literature search suggests that there are a total of nine (9) known types of percentiles, i.e., 9 

different methods of calculating percentiles in statistics literature (Hyndman and Fan, 1996). The R 

programming language (R Core Team, 2012) has all of these 9 types which can be computed using 

the following statement in R 

 

 quantile(x, p, type=k) where p = percentile, k = integer between 1 - 9 

 

ProUCL computes percentiles using Type 7; Minitab 16 and SPSS compute percentiles using Type 6. 

It is simply a matter of choice, as there is no 'best' type to use. Many software packages use one type 

for calculating a percentile, and another for a box plot (Hyndman and Fan, 1996). 

  

¶ An incorrect statement "By definition, the sample mean has a 50% chance of being below the true 

population mean" has been made in Helsel and Gilroy (2012) and also in Helsel (2012a). The above 

statement is not correct for means of skewed distributions (e.g., lognormal or gamma) commonly 

occurring in environmental applications.  Since Helsel (2012) prefers to use a lognormal distribution, 

the incorrectness of the above statement has been illustrated using a lognormal distribution.  The 

mean and median of a lognormal distribution (details in Section 2.3.2 of Chapter 2) are given by: 

 

mean = )5.0exp( 2

1 ůɛɛ += ; and median = )exp(ɛM =  

 

From the above equations, it is clear that the mean of a lognormal distribution is always greater than 

the median for all positive values of ů (sd of log-transformed variable). Actually the mean is greater 

than the p
th
 percentile when ů >2zp. For example, when p = 0.80, zp = 0.845, and mean of a 
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lognormal distribution, ɛ1 exceeds x0.80, the 80
th
 percentile when ů > 1.69. In other words, when ů > 

1.69 the lognormal mean will exceed the 80
th
 percentile of a lognormal distribution. 

 

To demonstrate the incorrectness of the above statement, a small simulation study was conducted. 

The distribution of sample means based upon samples of size 100 were generated from lognormal 

distributions with µ =4, and varying skewness. The experiment was performed 10,000 times to 

generate the distributions of sample means. The probabilities of sample means less than the 

population means were computed. The following results are noted. 
 

Table 1-2. Probabilities
1( )p x m< Computed for Lognormal Distributions with µ=4 and Varying Values of ů 

Results are based upon 10000 Simulation Runs for Each Lognormal Distribution Considered 

 

Parameter 

µ=4, ů=0.5 

µ1=61.86 

ů1=32.97 

µ=4, ů=1 

µ1=90.017 

ů1=117.997 

µ=4,ů=1.5 

µ1=168.17 

ů1=489.95 

µ=4,ů=2 

µ1=403.43 

ů1=2953.53 

µ=4,ů=2.5 

µ1=1242.65, 

ů1=28255.23 

1( )p x m<  0.519 0.537 0.571 0.651 0.729 

Mean 61.835 89.847 168.70 405.657 1193.67 

Median 61.723 89.003 160.81 344.44 832.189 

 

The probabilities summarized in the above table demonstrate that the statement about the mean 

made in Helsel and Gilroy (2012) is incorrect. 

 

¶ Graphical Methods: Graphical methods are available in ProUCL as exploratory tools which can be 

generated for both uncensored and left-censored data sets.  The Unofficial ProUCL Guide makes 

several comments about Box plots and Q-Q plots incorporated in ProUCL. The Unofficial ProUCL 

Guide states that all graphs with NDs are incorrect. These statements are misleading and incorrect. 

The intent of the graphical methods in ProUCL is exploratory to gain information (e.g., outliers, 

multiple populations, data distribution, patterns, and skewness) present in a data set. Based upon the 

data displayed (ProUCL displays a message [e.g., as a sub-title] in this regard) on those graphs, all 

statistics shown on those graphs generated by ProUCL are correct.  

 

¶ Box Plots: In statistical literature, one can find several ways to generate box plots. The practitioners 

may have their own preferences to use one method over the other.  All box plot methods including the 

one in ProUCL convey the same information about the data set (outliers, mean, median, symmetry, 

skewness).  ProUCL uses a couple of development tools such as FarPoint spread (for Excel type input 

and output operations) and ChartFx (for graphical displays); and ProUCL generates box plots using 

the built-in box plot feature in ChartFx. For all practical and exploratory purposes, box plots in 

ProUCL are equally good (if not better) as available in the various commercial software packages  to 

get an idea about the data distribution (skewed or symmetric), to identify outliers, and to compare 

multiple groups (main objectives of box plots in ProUCL). 

 

o As mentioned earlier, it is a matter of choice of using percentiles/quartiles to construct a box 

plot. There is no 'best' method to construct a box plot. Many software packages use one 

method (e.g., out of 9 described above) for calculating a percentile, and another for 

constructing a box plot (Hyndman and Fan, 1996). 

 

¶ Q-Q plots:  All  Q-Q plots incorporated in ProUCL are correct and of high quality. In addition to 

identify outliers, Q-Q plots are also used to assess data distributions. Multiple Q-Q plots are useful to 

perform point-by-point comparisons of grouped data sets unlike box plots based upon the five point 
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summary statistics.  ProUCL has Q-Q plots for normal, lognormal, and gamma distributions - not all 

of these graphical capabilities are directly available in other software packages such as NADA for R 

(Helsel, 2013).  ProUCL offers several exploratory options to generate Q-Q plots for data sets with 

NDs.  Only detected outlying observations may require additional investigation;  therefore, from an 

exploratory point of view, ProUCL can generate Q-Q plots excluding all NDs (and other options).  

Under this scenario there is no need to retain place holders (computing plotting positions used to 

impute NDs) as the objective is not to impute NDs. To impute NDs, ProUCL uses ROS methods 

(Gamma ROS and log ROS) requiring place holders; and ProUCL computes plotting positions for all 

detects and NDs to generate a proper regression model which is used to impute NDs. Also for 

comparison purposes, ProUCL can be used to generate Q-Q plots on data sets obtained by replacing 

NDs by their respective DLs or DL/2s. In these cases also, no NDs are imputed, and there is no need 

to retain placeholders for NDs.  On these Q-Q plots, ProUCL displays some relevant statistics which 

are computed based upon the data displayed on those graphs.  

  

¶ Helsel (2012a) states that the Summary Statistics module does not display KM estimates and that 

statistics based upon logged data are useless. Typically, estimates computed after processing the data 

do not represent summary statistics. Therefore, KM and ROS estimates are not displayed in Summary 

Statistics module. These statistics are available in several other modules including the UCL and BTV 

modules. At the request of several users, summary statistics are computed based upon logged data. It 

is believed that mean, median, or standard deviation of logged data do provide useful information 

about data skewness and data variability. 

 

¶ To test for the equality of variances the F-test, as incorporated in ProUCL, performs fairly well and 

the inclusion of the Levene's (1960) test will not add any new capability to the ProUCL software. 

Therefore, taking budget constraints into consideration, Levene's test has not been incorporated in the 

ProUCL software.  

 

o However, although it makes sense to first determine if the two variances are equal or unequal, 

this is not a requirement to perform a t-test. The t-distribution based confidence interval or 

test for m1 - m2 based on the pooled sample variance does not perform better than the 

approximate confidence intervals based upon Satterthwaite's test. Hence testing for the 

equality of variances is not required to perform a two-sample t-test. The use of Welch-

Satterthwaite's or Cochran's method is recommended in all situations (see, for example, F. 

Hayes [2005]).  

 

¶ Helsel (2012a) suggested that imputed NDs should not be made available to the users. The developers 

of ProUCL and other researchers like to have access to imputed NDs. As a researcher, for exploratory 

purposes, one may want to have access to imputed NDs to be used in exploratory advanced methods 

such as multivariate methods including data mining, cluster and principal component analyses. It is 

noted that one cannot easily perform exploratory methods on multivariate data sets with NDs. The 

availability of imputed NDs makes it possible for researchers to use data mining exploratory methods 

on multivariate data sets with NDs. Additional discussion on this topic is considered in Chapter 4.  

 

o The statements summarized above should not be misinterpreted. One may not use parametric 

hypothesis tests such as a t-test or a classical ANOVA on data sets consisting of imputed 

NDs. These methods require further investigation as the decision errors associated with such 

methods remain unquantified. There are other methods such as Gehan and Tarone-Ware tests 

in ProUCL5.0 which are better suited for data sets with multiple detection limits. 
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¶ Outliers:  Helsel (2012a) and Helsel and Gilroy (2012) make several comments about outliers. The 

philosophy (with input from EPA scientists) of the developers of ProUCL about the outliers in 

environmental applications is that those outliers (unless they represent typographical errors) may 

potentially represent impacted (site related or otherwise) locations or monitoring wells; and therefore 

may require further investigation.  

 

o The presence of outliers in a data set tends to destroy the normality of the data set. In other 

words, a data set with outliers can seldom (may be when outliers are mild lying around the 

border of the central and tail part of a normal distribution) follow a normal distribution. There 

are modern robust and resistant outlier identification methods (e.g., Rousseeuw and Leroy, 

1987;  Singh and Nocerino, 1995) which are better suited to identify outliers present in a data 

set; several of those robust outlier identification methods are available in the Scout 2008 

version 1.0 (EPA 2009) software package.  

 

o For both Rosner and Dixon tests, it is the data set (also called the main body of the data set) 

obtained after removing the outliers (and not the data set with outliers) that needs to follow a 

normal distribution. Outliers are not known in advance. ProUCL has normal Q-Q plots which 

can be used to get an idea about potential outliers (or mixture populations) present in a data 

set. However, since a lognormal model tends to accommodate outliers, a data set with outliers 

can follow a lognormal distribution; this does not imply that the outlier potentially 

representing an impacted/unusual location does not exist! In environmental applications, 

outlier tests should be performed on raw data sets, as the cleanup decisions need to be made 

based upon values in the raw scale and not in log-scale or some other transformed space. 

More discussion about outliers can be found in Chapter 7. 

 

¶ In Helsel (2012a), it is stated, "Mathematically, the lognormal is simpler and easier to interpret than 

the gamma (opinion)." We do agree with the opinion that the lognormal is simpler and easier to use 

but the log-transformation is often misunderstood and hence incorrectly used and interpreted. 

Numerous examples (e.g., Example 2-1 and 2-2, Chapter 2) are provided in the ProUCL guidance 

documents illustrating the advantages of the using a gamma distribution.  

 

¶ It is further stated in Helsel (2012 a) that ProUCL prefers the gamma distribution because it 

downplays outliers as compared to the lognormal. This argument can be turned around - in other  

words, one can say that the lognormal is preferred by practitioners who want to inflate the effect 

of the outlier.  Setting this argument aside, we prefer the gamma distribution as it does not transform 

the variable so the results are in the same scale as the collected data set. As mentioned earlier, log-

transformation  does appear to be simpler but problems arise when practitioners are not aware of the 

pitfalls (e.g., Singh and Ananda, 2002; Singh, Singh, and Iaci, 2002). 

 

¶ Helsel (2012a) and Helsel and Gilroy (2012) state that "lognormal and gamma are similar, so usually 

if one is considered possible, so is the other."  This is an incorrect and misleading statement. There 

are significant differences in the two distributions and in their mathematical properties. Based upon 

the extensive experience in environmental statistics and published literature, for skewed data sets that  

follow both lognormal and gamma distributions, the developers do favor the use of the gamma 

distribution over the lognormal distribution. The use of the gamma distribution based decision 

statistics is preferred to estimate the environmental parameters (mean, upper percentile). A lognormal 

model tends to hide contamination by accommodating outliers and multiple populations whereas a 

gamma distribution tends not to accommodate contamination (elevated values) as can be seen in 

Examples 2-1and 2-2 of Chapter 2. The use of the lognormal distribution on a data set with outliers 
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tends to yield inflated and distorted estimates which may not be protective of human health and the 

environment; this is especially true for skewed data sets of small of sizes <20-30.  

 

o In the context of computing a UCL95 of mean, Helsel and Gilroy (2012) and Helsel (2012a) state 

that GROS and LROS are probably never better than KM. It should be noted that these three 

estimation methods compute estimates of mean and standard deviation and not the upper limits 

used to estimate EPC terms and BTVs. The use of KM method does yield good estimates of mean 

and standard deviation as noted by Singh, Maichle, and Lee (2006).  Computing good estimates 

of mean and sd based upon left-censored data sets addresses only half of the problem. The main 

issue is to compute decision statistics (UCL, UPL, UTL) which account for uncertainty and data 

skewness inherently present in environmental data sets.  
 

o Realizing that for skewed data sets, Student's t-UCL, CLT-UCL, and standard and percentile 

bootstrap UCLs do not provide the specified coverage to the population mean, for uncensored 

data sets researchers (e.g., Johnson (1978), Chen (1995), Efron and Tibshirani (1993), Hall [1988, 

1992], Grice and Bain (1980), Singh, Singh, and Engelhardt (1997), Singh, Singh, and Iaci 

(2002))  have developed parametric (e.g., gamma) and nonparametric (e.g., bootstrap-t and Hall's 

bootstrap method, modified-t,  and Chebyshev inequality) methods to compute confidence 

intervals and upper limits which adjust for data skewness.   
 

o Analytically, it is not feasible to compare the various estimation and UCL computation methods 

for skewed data sets consisting of nondetect observations.  Instead, researchers use simulation 

experiments to learn about the distributions  and performances of the various statistics (e.g., KM-

t-UCL, KM-percentile bootstrap UCL, KM-bootstrap-t UCL, KM-Gamma UCL). Based upon the 

suggestions made in published literature and findings summarized in Singh, Maichle, and Lee 

(2006), it is reasonable to state and assume that the findings of the simulation studies performed  

on uncensored skewed data sets to compare the performances of the various UCL computation 

methods can be extended to skewed left-censored data sets.  

 

o Like uncensored skewed data sets, for left-censored data sets, ProUCL 5.0 has several parametric 

and nonparametric methods to compute UCLs and other limits which adjust for data skewness. 

Specifically, ProUCL uses KM estimates in gamma equations; in bootstrap-t method, and in 

Chebyshev inequality to compute upper limits for left-censored skewed data sets. 

 

¶ Helsel (2012a) states that ProUCL 4 is based upon presuppositions. It is emphasized that ProUCL 

does not make any suppositions in advance.  Due to the poor performance of a lognormal model (as 

demonstrated in the literature and illustrated via examples throughout this ProUCL Technical Guide), 

the use of a gamma distribution is preferred when a data set can be modeled by a lognormal model 

and a gamma model. To provide the desired coverage (as close as possible) for the population mean, 

in earlier versions of ProUCL (version 3.0), in lieu of H-UCL, the use of Chebyshev UCL was 

suggested for moderately and highly skewed data sets.  In later  (3.00.02 and higher) versions of 

ProUCL, depending upon data skewness and data distribution,  for gamma distributed data sets, the 

use of Gamma distribution was suggested to compute the UCL of mean.   

 

Upper limits (e.g., UCLs, UPLs, UTLs) computed using the Student's t statistic and percentile bootstrap 

method (Helsel, 2012, NADA for R, 2013) often fail to provide the desired coverage (e.g., 95% confidence 

coefficient) to the parameters (mean, percentile) of most of the skewed environmental populations. It is 

suggested that the practitioners compute the decision making statistics (e.g., UCLs, UTLs) by taking: data 

distribution; data set size; and data skewness into consideration. For uncensored and left-censored data 
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sets, several such upper limits computation methods have been incorporated in ProUCL 5.0 and its 

earlier versions.  

 

Contrary to the statements made in Helsel and Gilroy (2012), ProUCL software does not favor statistics 

which yield higher (e.g., nonparametric Chebyshev UCL) or lower (e.g., preferring the use of a gamma 

distribution  to using a lognormal distribution) estimates of the environmental parameters (e.g., EPC and 

BTVs). The main objectives of the ProUCL software funded by USEPA is to compute rigorous decision 

statistics to help the decision makers and project teams in making correct decisions which are protective 

of human health and the environment.  

 

Page 75 (Helsel [2012]): One of the reviewers of  the ProUCL 5.0 software drew our attention to the 

following incorrect statement made on page 75 of Helsel (2012): 

 

"I f there is only 1 reporting  limit, the result is that the mean is identical to a substitution of the reporting 

limit for censored observations."  

 

An example left-censored data set consisting of nondetect (NDs) observations with one reporting limit of 

20 illustrating this issue is described as follows.  

Y D_y 

20 0 

20 0 

20 0 

7 1 

58 1 

92 1 

100 1 

72 1 

11 1 

27 1 

 

The mean and standard deviation based upon the KM and two substitution methods: DL/2 and DL are 

summarized as follows: 

 

Kaplan-Meier (KM) Statistics      

Mean   39.4 

SD   35.56 

 

DL Substitution method (replacing censored values by the reporting limit) 

 

Mean   42.7 

SD   34.77 

 

DL/2 Substitution method (replacing NDs by the reporting limit)      

Mean               39.7 

SD                37.19 
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The above example illustrates that the KM mean (when only 1 detection limit is present) is not actually 

identical to  the mean estimate obtained using the substitution, DL method. The statement made in 

Helsel's text  holds when all observations reported as detects are greater than the single reporting limit 

which is seldom true in environmental data sets consisting of analytical concentrations. 
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CHAPTER 2 
 

Goodness-of-Fit Tests and Methods to Compute Upper 
Confidence Limit of Mean for Uncensored Data Sets without 

Nondetect Observations  

 

2.1 Introduction  

 
Many environmental decisions including exposure and risk assessment and cleanup decisions are made 

based upon the mean concentrations of the contaminants/constituents of potential concern (COPCs).  To 

address the uncertainty associated with the sample mean, a 95% upper confidence limit (UCL95) is used 

to estimate the unknown population mean, µ1. A UCL95 is routinely used to estimate the exposure point 

concentration (EPC) term (EPA, 1992; EPA, 2002a).  A UCL95 of mean represents that limit such that 

one can be 95% confident that the population mean, µ1, will be less than that limit with 95% confidence. 

From a risk point of view, a 95% UCL of mean represents a number that is health protective when used to 

compute risk and health hazards. It is therefore important to compute a reliable, defensible (from human 

health point of view) and cost-effective estimate of the exposure point concentration (EPC) term.  To 

compute reliable estimates of practical merit, ProUCL software provides several parametric and 

nonparametric UCL computation methods covering a wide-range of skewed distributions (e.g., 

symmetric, mildly skewed to highly skewed) for data sets of various sizes.  

 

Recently, the use of a Studentôs t-UCL95 and Chebyshev inequality based UCL95 has been 

recommended (ITRC, 2012) to estimate EPC terms using incremental sampling methodology (ISM) 

based soil samples collected from the various decision units (DUs). In order to facilitate the computation 

of ISM data based estimates of the EPC term, ProUCL5.0 can compute a 95% UCL of the mean based 

upon data sets of sizes as small as 3. Additionally, the UCL module of ProUCL can be used on datasets 

with NDs collected using the ISM approach. However, it is advised that the users do not compute the 

decision making statistics (e.g., UCLs, upper prediction limits [UPLs], upper tolerance limits [UTLs]) 

based upon discrete data sets consisting of less than 8-10 observations. 

 

For uncensored data sets without nondetect (ND) observations, theoretical details of the various UCL 

computation methods based upon Student's t- and percentile bootstrap as wells as more complicated 

bootstrap-t and  gamma distribution are described in this chapter.  One should not ignore the use of 

gamma distribution based UCLs (and other upper limits) just because it is easier to use a lognormal 

distribution. Typically, environmental data sets are positively skewed, and a default lognormal 

distribution (EPA, 1992a) is used to model such data distributions; and an H-statistic based Landôs (Land, 

1971, 1975) H-UCL is used to estimate the EPC term. Hardin and Gilbert (1993), Singh, Singh, and 

Engelhardt (1997, 1999), Schultz and Griffin (1999), and Singh, Singh, and Iaci (2002) pointed out 

several problems associated with the use of the lognormal distribution and the H-statistic to compute UCL 

of the mean. For lognormal data sets with high standard deviation (sd), ů, of the natural log-transformed 

data (e.g., ů exceeding 1.0 to 1.5), the H-UCL becomes unacceptably large, exceeding the 95% and 99% 

data quantiles, and even the maximum observed concentration, by orders of magnitude (Singh, Singh, and 

Engelhardt, 1997). The H-UCL is also very sensitive to a few low or a few high values. For example, the 

addition of a single low measurement can cause the H-UCL (by increasing variability) to increase by a 

large amount (Singh, Singh, and Iaci, 2002). Realizing that the use of the H-statistic can result in an 
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unreasonably large UCL, it has been recommended (EPA, 1992a) to use the maximum value as an 

estimate of EPC term in cases when the H-UCL exceeds the largest value in the data set. For uncensored 

data sets without any NDs, ProUCL makes recommendations on how to compute an appropriate UCL95. 

Those recommendations are based upon the findings of simulation studies summarized in Singh and 

Singh (2003) and Singh, Singh, and Iaci (2002). 

 

It is noted that in practice, many skewed data sets follow a lognormal as well as a gamma distribution. 

Singh, Singh, and Iaci (2002) observed that UCLs based upon a gamma distribution yield reliable and 

stable values of practical merit. It is, therefore, desirable to test if an environmental data set follows a 

gamma distribution. For data sets following a gamma distribution, the EPC term should be estimated 

using an adjusted gamma (when n<50) or approximate gamma (when nÓ 50) UCL95 of the mean. A 

gamma distribution based UCL95 of the mean approximately provides the specified 95% coverage to the 

population mean, ɛ1 = kɗ of a gamma distribution, G(k, ɗ) with k and ɗ respectively representing the 

shape and scale parameters. For highly skewed gamma distributed data sets with values of the shape 

parameter, k < 0.1, a 95% UCL may be computed using the bootstrap-t-method or Hallôs bootstrap 

method when the sample size, n, is less small, such as <15 to 20, and for larger samples with n> 20, a 

UCL of the mean may be computed using the adjusted or approximate gamma UCL (Singh, Singh, and 

Iaci, 2002) computation method.    

 

It is noted that unlike the percentile bootstrap and bias-corrected accelerated bootstrap (BCA) methods, 

bootstrap-t and Hallôs bootstrap methods (Efron and Tibshirani, 1993) account for data skewness and 

their use is recommended on skewed data sets to compute UCLs of the mean. However, it should be noted 

that bootstrap-t and Hallôs bootstrap methods sometimes result in erratic, inflated, and unstable UCL 

values, especially in the presence of outliers (Efron and Tibshirani, 1993). Therefore, these two methods 

should be used with caution. The user should examine the various UCL results and determine if the UCLs 

based upon the bootstrap-t and Hallôs bootstrap methods represent reasonable and reliable UCL values. If 

the results based upon these two methods are much higher than the rest of the UCL computation methods, 

then this could be an indication of erratic behavior of these two bootstrap UCL computation methods.  

ProUCL prints out a warning message whenever the use of these two bootstrap methods is recommended. 

In case these two bootstrap methods yield erratic and inflated UCLs, the UCL of the mean may be 

computed using the Chebyshev inequality. 

 

ProUCL 5.0 has graphical (e.g., quantile-quantile [Q-Q] plots) and formal goodness-of-fit (GOF) tests for 

normal, lognormal, and a gamma distributions. These GOF tests are available for data sets with and 

without NDs. The critical values of the Anderson-Darling (A-D) test statistic and the Kolmogorov-

Smirnov (K-S) test statistic to test for gamma distribution were generated using Monte Carlo simulation 

experiments (Singh, Singh, and Iaci 2002). Those critical values have been incorporated in ProUCL 

software and are tabulated in Appendix A for various levels of significance. Singh, Singh, and Engelhardt 

(1997, 1999); Singh, Singh, and Iaci (2002); and Singh and Singh (2003) evaluated the performances of 

several parametric, nonparametric and bootstrap UCL computation methods; some of those methods that 

have been included in the ProUCL software.  

 

ProUCL computes various summary statistics for raw, as well as, log-transformed data sets with and 

without nondetect observations. In this Technical Guide and in ProUCL software, log-transformation 

(log) stands for the natural logarithm (ln) or log to the base e. For uncensored data sets, mathematical 

algorithms and formulae used in ProUCL to compute the various UCLs are summarized in this chapter. 

ProUCL also computes the maximum likelihood estimates (MLEs) and the minimum variance unbiased 

estimates (MVUEs) of the various population parameters of normal, lognormal, and gamma distributions. 

Nonparametric UCL computation methods in ProUCL include: Jackknife, central limit theorem (CLT), 
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adjusted-CLT, Chebyshev inequality, and bootstrap methods. It is well known that the Jackknife method 

(with sample mean as an estimator) and Studentôs t-method yield identical UCL values. Moreover, it is 

noted that UCLs based upon the standard bootstrap and the percentile bootstrap methods do not perform 

well (e.g., do not provide the specified coverage for the mean) for skewed data sets.  

 

Note on Computing Lower Confidence Limits (LCLs) of Mean: In several environmental applications, 

one needs to compute a LCL of the unknown population mean.  At present, ProUCL does not directly 

compute LCLs of mean. However, it should be pointed out that for data sets with and without nondetects, 

except for the bootstrap methods, gamma distribution, and H-statistic based LCL of mean, the same 

critical value (e.g., normal z value, Chebyshev critical value, or t-critical value) can be used to compute a 

LCL of mean as used in the computation of the UCL of mean incorporated in ProUCL. Specifically,  to 

compute a LCL, the '+' sign used in the computation of the corresponding UCL needs to be replaced by 

the '-' sign in the equation used to compute that UCL (excluding gamma, lognormal H-statistic, and 

bootstrap methods). For specific details, the user may want to consult a statistician. For data sets without 

nondetect observations, the user may want to use the Scout 2008 software package (EPA 2009c) to 

directly compute the various parametric and nonparametric LCLs of mean.  

2.2 Goodness-of-Fit (GOF) Tests 

Let x1, x2, ... , xn be a representative random sample (e.g., representing lead concentrations) from the 

underlying population (e.g., site areas under investigation) with unknown mean, ɛ1, and variance, ů1
2
. Let 

µ and ů represent the population mean and the population standard deviation (sd) of the log-transformed 

(natural log to the base e) data. Let y  and sy (=ůĔ) be the sample mean and sample sd, respectively, of the 

log-transformed data, yi = log (xi); i = 1, 2, ... , n. Specifically, let 
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Similarly, let x  and sx be the sample mean and sd of the raw data, x1 , x2 , .. , xn, obtained by replacing y 

by x in equations (2-1) and (2-2), respectively. In this chapter, irrespective of the underlying distribution, 

µ1, and ů1
2
 represent the mean and variance of the random variable X (in original units), whereas µ and ů

2
 

represent the mean and variance of Y = loge(X). 

  

Three data distributions have been considered in ProUCL 5.0. These include the normal, lognormal, and 

the gamma distributions. Shapiro-Wilk (for n up to 2000) and Lilliefors test statistics are used to test for 

normality or lognormality of a data set. Lilliefors test (along with graphical Q-Q plot) seems to perform 

fairly well for samples of size 50 and higher. The empirical distribution function (EDF) based methods: 

the K-S test and the A-D test are used to test for a gamma distribution. Extensive critical values for these 

two test statistics have been obtained via Monte Carlo simulation experiments (Singh, Singh, and Iaci 

2002). For interested users, those critical values are given in Appendix A for various levels of 

significance. In addition to these formal tests, the informal histogram and quantile-quantile (Q-Q) plots 

are also available to visually inspect data distributions. Q-Q plots also provide useful information about 

the presence of potential outliers and multiple populations in a data set. A brief description of the GOF 

tests follows. 
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2.2.1 Test Normality and Lognormality of a Data Set   

ProUCL tests for normality and lognormality of a data set using three different methods described below. 

The program tests normality or lognormality at three different levels of significance, namely, 0.01, 0.05, 

and 0.1 (or confidence levels: 0.99, 0.95, and 0.90). For normal distributions, ProUCL outputs 

approximate p-values for the Shapiro-Wilk (S-W) GOF test. The details of those methods can be found in 

the cited references. 

2.2.1.1  Normal Quantile-Quantile (Q-Q) Plot  

A normal Q-Q represents a graphical method to test for approximate normality or lognormality of a data 

set (Hoaglin, Mosteller, and Tukey 1983; Singh, 1993). A linear pattern displayed by the majority of the 

data suggests approximate normality or lognormality (when performed on log-transformed data) of the 

data set. For example, a high value (e.g., 0.95 or greater) of the correlation coefficient of the linear pattern 

may suggest approximate normality (or lognormality) of the data set under study. However, it should be 

noted that on this graphical display, observations well-separated from the linear pattern displayed by the 

majority of data represent the outlying observations not belonging to the main dominant population 

(whose distribution one is assessing based upon a data set); and apparent jumps and breaks in the Q-Q 

plot suggest the presence of multiple populations. The correlation of the Q-Q plot based upon such a data 

set may still be high but that does not signify that the data set follows a normal distribution.  

 

Notes: Graphical displays provide added insight into a data set which might not be possible to 

comprehend based upon statistics such as Shapiro-Wilk (S-W) statistic or a correlation coefficient. The 

correlation coefficient of a Q-Q plot with curves, jumps and breaks can be high, which does not 

necessarily imply that the data follow a normal (or lognormal) distribution. The goodness-of-fit (GOF) 

test of a data set should always be judged based upon the formal (e.g., S-W statistic) as well as informal 

graphical displays. The normal Q-Q plot may be used as an aid to identify outliers or to identify multiple 

populations. On all Q-Q plots, ProUCL displays relevant statistics including: mean, sd, GOF test statistic, 

associated critical value, p-value (when available), and the correlation coefficient.  

 

There is no substitute for graphical displays of data sets as graphical displays provide added insight about 

the data set and graphical displays do not get distorted by outliers and/or mixture populations. Therefore 

the final conclusion about the data distribution should be based upon the formal goodness-of-fit tests as 

wells as Q-Q plots. This statement is true for all GOF tests (e.g., normal, lognormal, and gamma 

distributions).  

2.2.1.2  Shapiro-Wilk (S-W) Test 

The S-W test is a powerful test used to test the normality or lognormality of a data set. ProUCL performs 

this test for samples of size up to 2000 (Royston , [1982, 1982a]).  For samples of sizes Ò 50, in addition 

to a test statistic and critical value, an approximate p-value associated with S-W test is also displayed. For 

samples of size >50, only approximate p-values are displayed. Based upon the selected level of 

significance and the computed test statistic, ProUCL informs the user if the data set is normally (or 

lognormally) distributed. This information should be used to compute an appropriate UCL of the mean.  

2.2.1.3  Lilliefors Test 

This test is useful for data sets of larger size (Dudewicz and Misra, 1988; Conover, 1999). Based upon the 

selected level of significance and the computed test statistic, ProUCL informs the user if the data set is 
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normally (or lognormally) distributed. The user should use this information to compute an appropriate 

UCL of the mean. The program prints the relevant statistics on the Q-Q plot of data.  

 

¶ For convenience, normality, lognormality, or gamma distribution test results for 0.05 level of 

significance (built-in) are displayed on the UCL (and background statistics) output sheets. This 

helps the user in selecting the most appropriate UCL to estimate the EPC term. It should be 

pointed out that sometimes, the two GOF tests may lead to different conclusions. In such 

situations, ProUCL displays a message that data are approximately normally (or lognormally) 

distributed. The user should make a decision based upon the information provided by the 

associated Q-Q plot and the values of the GOF test statistics.  

 

New in ProUCL 5.0:  To streamline the decision process used to compute upper limits (e.g., UCL95), 

ProUCL 5.0 makes a decision about the data distribution based upon both of the GOF test statistics: 

Lilliefors and Shapiro-Wilk GOF statistics for normal and lognormal distributions; and A-D and K-S 

GOF test statistics for gamma distribution. Specifically, when only one of the two GOF statistic leads to 

the conclusion that data are normal (lognormal or gamma), ProUCL outputs the conclusion that the data 

set follows an approximate normal (lognormal, gamma) distribution; all suggestions to use parametric or 

nonparametric decision statistics (e.g., UCL95) have been made based upon this conclusion.  

2.2.2 Gamma Distribution 

A continuous random variable, X (e.g., concentration of an analyte), is said to follow a gamma 

distribution, G(k, ɗ) with parameters k > 0 (shape parameter) and ɗ > 0 (scale parameter), if its probability 

density function is given by the following equation: 
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Many positively skewed data sets follow a lognormal as well as a gamma distribution. It is observed that 

the use of a gamma distribution tends to yield reliable and stable 95% UCL values of practical merit. It is 

therefore, desirable to test if an environmental data set follows a gamma distribution. If a skewed data set 

does follow a gamma model, then a 95% UCL of the population mean should be computed using a 

gamma distribution. For data sets which follow a gamma distribution, the adjusted 95% UCL of the mean 

based upon a gamma distribution is optimal (Bain and Engelhardt, 1991) and approximately provides the 

specified 95% coverage of the population mean, ɛ1 = kɗ (Singh, Singh, and Iaci [2002]).  

 

The GOF test statistics for a gamma distribution are based upon the EDF. The two EDF tests incorporated 

in ProUCL are the K-S test and the A-D test, which are described in DôAgostino and Stephens (1986) and 

Stephens (1970). The graphical Q-Q plot for a gamma distribution has also been incorporated in ProUCL. 

The critical values for the two EDF tests are not available, especially when the shape parameter, k, is 

small (k < 1). Therefore, the associated critical values have been computed via extensive Monte Carlo 

simulation experiments (Singh, Singh, and Iaci, 2002). These critical values for the two test statistics are 

given in Appendix A. The 1%, 5%, and 10% critical values of these two test statistics have been 

incorporated in ProUCL 5.0. The GOF tests for a gamma distribution depend upon the MLEs of the 

gamma parameters, k and ɗ, which should be computed first before performing the goodness-of-fit tests. 

Information about estimation of gamma parameters, gamma GOF tests, and construction of gamma Q-Q 
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plots is not readily available in statistical textbooks. Therefore, a detailed description of these methods for 

a gamma distribution is provided as follows. 

2.2.2.1  Quantile-Quantile (Q-Q) Plot for a Gamma Distribution  

Let x1, x2, ... , xn be a random sample from the gamma distribution, G(k,q); and let x(1) ¢ x(2)  ¢ ... ¢ x(n) 

represent the ordered sample. Let kĔand qĔ represent the maximum likelihood estimates (MLEs) of k and 

q, respectively;  details of the computation of the MLEs of k and q  can be found in  Singh, Singh, and 

Iaci (2002). The Q-Q plot for gamma distribution is obtained by plotting the scatter plot of pairs, 

),( )(0 ii xx =:i 1, 2, », n. The gamma quantiles, x0i, are given by the equation, ;2/Ĕ00 ɗzx ii =  =:i 1, 2, », 

n, where the quantiles z0i (already ordered) are obtained by using the inverse chi-square distribution and 

are given as follows: 
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In (2-4), 
2
Ĕ2k

c  represents a chi-square random variable with kĔ2  degrees of freedom (df). The program, 

PPCHI2 (Algorithm AS91) described in Best and Roberts (Applied Statistics [1975, Vol. 24, No. 3]) has 

been used to compute the inverse chi-square percentage points given by equation (2-4). All relevant 

statistics including the MLE of k are also displayed on a gamma Q-Q plot.  

 

Like a normal Q-Q plot, a linear pattern displayed by the majority of the data on a gamma Q-Q plot 

suggests that the data set follows an approximate gamma distribution. For example, a high value (e.g., 

0.95 or greater) of the correlation coefficient of the linear pattern may suggest an approximate gamma 

distribution of the data set under study. However, on this Q-Q plot points well-separated from the bulk of 

data may represent outliers. Apparent breaks and jumps in the gamma Q-Q plot suggest the presence of 

multiple populations. The correlation coefficient of such a Q-Q plot (e.g., with outliers and jumps) can 

still be high which does not signify that the data follow a gamma distribution. Therefore, graphical Q-Q 

plot and other formal GOF tests: the A-D test or K-S test should be used on the same data set to determine 

the distribution of a data set.  

2.2.2.2  Empirical Distribution Function (EDF)-Based Goodness-of-Fit Tests     

Let F(x) be the cumulative distribution function (CDF) of a gamma distributed random variable, X. Let Z 

= F(X), then Z represents a uniform U(0,1) random variable (Hogg and Craig, 1995). For each xi, compute 

zi by using the incomplete gamma function given by the equation zi = F (xi); =:i 1, 2, », n. The 

algorithm (Algorithm AS 239, Shea[1988])) as given in the book Numerical Recipes in C, the Art of 

Scientific Computing (Press et al., 1990) has been used to compute the incomplete gamma function. 

Arrange the resulting zi in ascending order as z(1) ¢  z(2)  ¢ ... ¢  z(n). Let  nzz
n
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n, zi; =:i 1, 2, », n.  

 

Compute the following two statistics:  

 

 }/1{max )(ii znD -=+ , and }/)1({max )( nizD ii --=-   (2-5) 
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The K-S test statistic is given by ),max( -+= DDD ; and the A-D test statistic is given as follows:  
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As mentioned before, the critical values for these two statistics, D and A
2
, are not readily available. For 

the A-D test, only the asymptotic critical values are available in the statistical literature (DôAgostino and 

Stephens [1986]). Some raw critical values for K-S test are given in Schneider (1978), and Schneider and 

Clickner (1976).  Critical values of these test statistics are computed via Monte Carlo experiments (Singh, 

Singh, and Iaci 2002). It is noted that the distributions of the K-S test statistic, D, and the A-D test 

statistic, A
2
, do not depend upon the scale parameter, ɗ; therefore, the scale parameter, ɗ, has been set 

equal to 1 in all simulation experiments. In order to generate critical values, random samples from gamma 

distributions were generated using the algorithm as given in Whittaker (1974). It is observed that the 

simulated critical values are in close agreement with all available published critical values.  

 

The critical values simulated by Singh, Singh, and Iaci (2002) for the two test statistics have been 

incorporated in ProUCL 4.1.001 and its previous versions for three levels of significance, 0.1, 0.05, and 

0.01. For each of the two tests, if the test statistic exceeds the corresponding critical value, then the 

hypothesis that the data set follows a gamma distribution is rejected. ProUCL computes the GOF test 

statistics and displays them on the gamma Q-Q plot and also on the UCL and background statistics output 

sheets generated by ProUCL. Like all other tests, in practice these two GOF test may lead to different 

conclusions. In such situations, ProUCL outputs a message that the data follow an approximate gamma 

distribution. The user should make a decision based upon the information provided by the associated 

gamma Q-Q plot and the values of the GOF test statistics. 

 

Computation of the gamma distribution based decision statistics and critical values: While computing the 

various decision statistics (e.g., UCL and BTVs), ProUCL uses biased corrected estimates, kstar, 
*Ĕk  and 

theta star, 
*Ĕq  (described in Section 2.3.3) of the shape, k and scale, q parameters of the gamma 

distribution.  It is noted that the critical values for the two gamma GOF tests reported in the literature 

(e.g., DôAgostino and Stephens [1986], Schneider and Clickner [1976] and Schneider [1978]) were 

computed using the MLE estimates, Ĕk  and Ĕq of the two gamma parameters, k andq. Therefore, the 

critical values of A-D and K-S tests incorporated in ProUCL have also been computed using the MLE 

estimates: khat, Ĕk  and theta hat,Ĕq of the two gamma parameters, k andq.  

 

Updated Critical Values of Gamma GOF Test Statistics (New in ProUCL 5.0): For values of the gamma 

distribution shape parameter, k Ò 0.1, critical values of the two gamma GOF tests: Anderson-Darling and 

Kolmogorov Smirnov tests incorporated in ProUCL 4.1.01 and earlier versions have been updated in 

ProUCL 5.0. Critical values incorporated in ProUCL 4.1 were simulated using the gamma deviate 

generation algorithm (Whittaker [1974]) available at the time and with the source code described in the 

book Numerical Recipes in C, the Art of Scientific Computing (Press et al., 1990). It is noted that the 

gamma deviate generation algorithm available at the time was not very efficient especially for smaller 

values of the shape parameter, k (e.g., Ò 0.1). For values of the shape parameter, kÒ 0.1, significant 

discrepancies were found in the critical values of the two gamma GOF test statistics obtained using the 

two gamma deviate generation algorithms: Whitaker  (1974) and Marsaglia and Tsang (2000).  

 

Therefore, for values of k Ò 0.2, critical values for the two gamma GOF tests have been re-generated and 

tables of  critical values of the two gamma GOF tests have been updated in Appendix A.  Specifically, for 

values of the shape parameter, k (e.g., k Ò 0.1), critical values of the two gamma GOF tests have been 

generated using the more efficient gamma deviate generation algorithm as described in Marsaglia and 
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Tsang's (2000) and Best (1983). Detailed description about the implementation of Marsaglia and Tsang's 

algorithm to generate gamma deviates can be found in Kroese, Taimre, and Botev (2011).  It should be 

pointed out that from practical point of view, for values of k greater than 0.1, the simulated critical values 

obtained using Marsaglia and Tsang's algorithm (2000) are in general agreement with the critical values 

of the two GOF test statistics incorporated in ProUCL 4.1 for the various values of the sample size 

considered. Therefore, those critical values for values of k > 0.1 do not have to be updated. However, for 

comparison purposes, for k=0.2 both older and newly generated critical values of the two GOF have been 

included in tables presented in Appendix A. More details on this subject are provided in Appendix A.  

2.3 Estimation of Parameters of the Three Distributions Incorporated in ProUCL 

Let ɛ1 and ů1
2
 represent the mean and variance of the random variable, X, and ɛ and ů

2
 represent the mean 

and variance of the random variable, Y = log(X). Also, ůĔ represents the standard deviation of the log-

transformed data. For both lognormal and gamma distributions, the associated random variable can take 

only positive values. It is typical of environmental data sets to consist of only positive concentrations.  

2.3.1 Normal Distribution 

Let X be a continuous random variable (e.g., lead concentrations in surface soils of a site), which follows 

a normal distribution, N (ɛ1, ů1
2
) with mean, ɛ1, and variance, ů1

2
. The probability density function of a 

normal distribution is given by the following equation: 

 

                              
2 2
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For normally distributed data sets, it is well known (Hogg and Craig, 1995) that the MVUEs of the mean, 

ɛ1, and the variance, ů1
2
, are respectively given by the sample mean, x , and sample variance, sx

2
. It is also 

well known that for normally distributed data sets, a UCL of the unknown mean, ɛ1, based upon the 

Studentôs t-distribution is optimal. It was observed via Monte Carlo simulation experiments (Singh and 

Singh, 2003, Draft EPA Internal Report) that for normally distributed data sets, the modified-t-UCL and 

UCL based upon the bootstrap-t method provide the exact 95% coverage to the population mean. For 

normally distributed data sets, the UCLs based upon these three methods are in close agreement.  

2.3.1 Lognormal Distribution 

If Y = log(X) is normally distributed with the mean, ɛ, and variance, ů
2
, then X is said to be lognormally 

distributed with parameters ɛ and ů
2
 and is denoted by LN(ɛ, ů

2
). It should be noted that ɛ and ů

2
 are not 

the mean and variance of the lognormal random variable, X, but they are the mean and variance of the 

log-transformed random variable, Y, whereas ɛ1, and ů1
2
 represent the mean and variance of X. Some 

parameters of interest of a two-parameter lognormal distribution, LN(µ, ů
2
), are given as follows: 

 

                                 Mean = )5.0exp( 2

1 ůɛɛ +=  (2-8) 

 

                                 Median = )exp(ɛM =  (2-9) 

 

                                 Variance = ]1))[exp(2exp( 222

1 -+= ůůɛů  (2-10)  

 

                                 Coefficient of Variation = 1)exp( 2

11 -== ůɛůCV   (2-11) 
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                                 Skewness = CV
3
+ 3CV (2-12)  

2.3.2.1  MLEs of the Parameters of a Lognormal Distribution 

For lognormally distributed data sets, note that y and sy (=ůĔ) are the MLEs of ɛ and ů, respectively. The 

MLE of any function of the parameters ɛ and ů
2
 is obtained by substituting these MLEs in place of the 

parameters (Hogg and Craig, 1995). Therefore, replacing ɛ and ů by their MLEs in equations (2-8) 

through (2-12) will result in the MLEs (but biased) of the respective parameters of the lognormal 

distribution. The program ProUCL computes all of these MLEs for lognormally distributed data sets. 

These MLEs are also printed on the Excel-type output spreadsheet generated by ProUCL. 

2.3.2.2  Relationship between Skewness and Standard Deviation, ů 

Note that for a lognormal distribution, the CV (given by equation (2-11) above) and the skewness (given 

by equation (2-12)) depend only on ů. Therefore, in this Technical Guide and also in ProUCL software, 

the standard deviation, ů (sd of log-transformed variable, Y), or its MLE, sy (=ůĔ), has been used as a 

measure of the skewness of lognormally distributed data sets and also of other data sets with positive 

values. The larger is the sd, the larger are the CV and the skewness. For example, for a lognormal 

distribution: with ů = 0.5, the skewness = 1.75; with ů =1.0, the skewness = 6.185; with ů =1.5, the 

skewness = 33.468; and with ů = 2.0, the skewness = 414.36. The skewness of a lognormal distribution 

becomes unreasonably large as ů starts approaching and exceeding 1.5. Note that for a gamma 

distribution, the skewness is a function of the shape parameter, k. As k decreases, the skewness increases. 

It is observed (Singh, Singh, Engelhardt, 1997; Singh, Singh, and Iaci, 2002) that for smaller sample sizes 

(such as smaller than 50), and for values of ů (or ůĔ) approaching and exceeding 1.5to 1.75, the use of the 

H-statistic-based H-UCL results in impractical and unacceptably large values.  

 

For positively skewed data sets, the various levels of skewness can be defined in terms ů or its MLE 

estimate, sy. These levels are described as follows in Table 2-1. ProUCL software uses the sample sizes 

and skewness levels defined below to make recommendations.  

 

Table 2-1. Skewness as a Function of ů (or its MLE, sy =ůĔ), sd of log(X) 

  

Standard Deviation 

of Logged Data 
Skewness 

ů < 0.5 Symmetric to mild skewness 

0.5 Ò ů < 1.0 Mild skewness to moderate skewness 

1.0 Ò ů < 1.5 Moderate skewness to high skewness 

1.5 Ò ů < 2.0 High skewness  

2.0 Ò ů < 3.0 
Very high skewness (moderate probability of 

outliers and/or multiple populations) 

ů Ó 3.0 
Extremely high skewness (high probability of 

outliers and/or multiple populations) 
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2.3.2.3  MLEs of the Quantiles of a Lognormal Distribution 

For highly skewed (e.g., ů exceeding 1.5), lognormally distributed populations, the population mean, ɛ1, 

often exceeds the higher quantiles (e.g., 80%, 90%, 95%) of the distribution. Therefore, the estimation of 

these quantiles is also of interest. This is especially true when one may want to use MLEs of the higher 

order quantiles (e.g., 95%, 97.5%, etc.) as estimates of the EPC term. The formulae to compute these 

quantiles are briefly described here.  

 

The p
th
 quantile (or 100 p

th
 percentile), xp, of the distribution of a random variable, X, is defined by the 

probability statement, P(X Ò xp) = p. If zp is the p
th
 quantile of the standard normal random variable, Z, 

with P(Z Ò  zp) = p, then the p
th
 quantile of a lognormal distribution is given by  xp = exp(ɛ + způ). Thus 

the MLE of the p
th
 quantile is given by: 

 

                                                                 )ĔĔexp(Ĕ ůzɛx pp +=  (2-13) 

 

It is expected that 95% of the observations coming from a lognormal LN(ɛ, ů
2
) distribution would lie at or 

below exp(ɛ + 1.65ů). The 0.5
th
 quantile of the standard normal distribution is z0.5 = 0, and the 0.5

th
 

quantile (or median) of a lognormal distribution is M = exp(ɛ), which is obviously smaller than the mean, 

ɛ1, as given by equation (2-8).  

 

Notes: The mean, ɛ1, is greater than xp if and only if ů > 2zp. For example, when p = 0.80, zp = 0.845, ɛ1 

exceeds x0.80, the 80
th
 percentile if and only if ů > 1.69, and, similarly, the mean, ɛ1, will exceed the 95

th
 

percentile if and only if ů > 3.29 (extremely highly skewed). ProUCL computes the MLEs of the 50% 

(median), 90%, 95%, and 99% percentiles of lognormally distributed data sets.  

2.3.2.4  MVUEs of Parameters of a Lognormal Distribution 

Even though the sample mean x  is an unbiased estimator of the population mean, ɛ1, it does not possess 

the minimum variance (MV). The MVUEs of ɛ1 and ů1
2
 of a lognormal distribution are given as follows: 

 

                                  )2/()exp(Ĕ 2

1 yn sgyɛ=  (2-14) 

                                  ))]1/()2(()2()[2exp(Ĕ 222
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The series expansion of the function gn(x) is given in Bradu and Mundlak (1970), and Aitchison and 

Brown (1976). Tabulations of this function are also provided by Gilbert (1987). Bradu and Mundlak 

(1970) computed the MVUE of the variance of the estimate, 1
Ĕɛ, 

 

                                  ))]1/()2(())2()[(2exp()Ĕ(Ĕ 222

1

2 ---= nsngsgyɛů ynyn  (2-16) 

 

The square root of the variance given by equation (2-16) is called the standard error (SE) of the 

estimate, 1
Ĕɛ, given by equation (2-14).  The MVUE of the median of a lognormal distribution is given by 

 

                                                ))]1(2/([)exp(Ĕ 2 --= nsgyM yn   (2-17) 

 

For a lognormally distributed data set, ProUCL also computes these MVUEs given by equations (2-14) 

through (2-17). 
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2.3.3 Estimation of the Parameters of a Gamma Distribution 

The population mean and variance of a two-parameter gamma distribution, G(k, ɗ), are functions of both 

parameters, k and ɗ. In order to estimate the mean, one has to obtain estimates of k and ɗ. The 

computation of the MLE of k is quite complex and requires the computation of Digamma and Trigamma 

functions. Several researchers (Choi and Wette, 1969; Bowman and Shenton 1988; Johnson, Kotz, and 

Balakrishnan, 1994) have studied the estimation of the shape and scale parameters of a gamma 

distribution. The MLE method to estimate the shape and scale parameters of a gamma distribution is 

described below. 

 

Let x1, x2, ... , xn be a random sample (e.g., representing constituent concentrations) of size n from a 

gamma distribution, G(k, ɗ), with unknown shape and scale parameters, k and ɗ, respectively. The log- 

likelihood function (obtained using equation (2-3)) is given as follows: 

 

        ä ä--+--= ɗxxkknɗnkɗkxxxLogL iin )log()1()(ũlog)log(),;,...,,( 21  (2-18) 

To find the MLEs of k and ɗ, one differentiates the log-likelihood function as given in (2-18) with respect 

to k and ɗ, and set the derivatives to zero. This results in the following two equations: 
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Solving equation (2-20) forɗĔ, and substituting the result in (2-19), we get following equation: 
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There does not exist a closed form solution of equation (2-21). This equation needs to be solved 

numerically forkĔ, which requires the use of digamma and trigamma functions. An estimate of k can be 

computed iteratively by using the Newton-Raphson method (Press et al., 1990), leading to the following 

iterative equation: 
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The iterative process stops when kĔ starts to converge. In practice, convergence is typically achieved in 

fewer than 10 iterations. In equation (2-22), 
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Here )(Ɋk  is the digamma function and )(Ɋ k¡  is the trigamma function. Good approximate values for 

these two functions (Choi and Wette 1969) can be obtained using the following two approximations. For 

k Ó 8, these functions are approximated by: 

 

                         [ ]{ } )2()6())21/(110/1(11)log()(Ɋ 22 kkkkkk --+-º , and (2-23) 

 

                          [ ]{ }{ }kkkkkk )2()3(/))7/(15/1(111)(Ɋ 22--++º¡  (2-24) 

 

For k < 8, one can use the following recurrence relations to compute these functions: 

 

                                                 kkk /1)1(Ɋ)(Ɋ -+= , and (2-25) 

 

                                                 
2/1)1(Ɋ)(Ɋ kkk ++¡=¡  (2-26) 

 

In ProUCL, equations (2-23) through (2-26) have been used to estimate k. The iterative process requires 

an initial estimate of k. A good starting value for k in this iterative process is given by k0 = 1 / (2M). Thom 

(1968) suggested the following approximation as an initial estimate of k: 
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Bowman and Shenton (1988) suggest using kĔ, given by (2-27) as a starting value of k  for the iterative 

procedure, calculating lkĔ at the l
th
 iteration using the following formula: 
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Both equations (2-22) and (2-28) have been used to compute the MLE of k. It is observed that the 

estimate, kĔ, based upon Newton-Raphson method, as given by equation (2-22), is in close agreement 

with the one obtained using equation (2-28) with Thomôs approximation as an initial estimate. Choi and 

Wette (1969) further concluded that the MLE of k, kĔ, is biased high. A bias-corrected (Johnson, Kotz, 

and Balakrishnan 1994) estimate of k is given by: 

 

                                                       )3/(2/Ĕ)3(Ĕ* nnknk +-=  (2-29) 

 

In (2-29), kĔ is the MLE of k obtained using either (2-22) or (2-28). Substitution of equation (2-29) in 

equation (2-20) yields an estimate of the scale parameter, ɗ, given as follows: 

 

                                                                    
** Ĕ/Ĕ kxɗ=  (2-30) 

 

ProUCL computes simple MLEs of k and ɗ, and also bias-corrected estimates given by (2-29) and (2-30) 

of k and ɗ. The bias-corrected estimate (called k star and theta star in ProUCL graphs and output sheets) 
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of k as given by (2-29) has been used in the computation of the UCLs (as given by equations (2-34) and 

(2-35) below) of the mean of a gamma distribution. 

Note on Bias Corrected Estimates, 
*Ĕk  and 

*Ĕq : As mentioned above, Choi and Wette (1969) concluded 

that the MLE, kĔ, of k is biased high. They suggested the use of the bias-corrected (Johnson, Kotz, and 

Balakrishnan 1994) estimate of k given by (2-29) above. However, recently the developers performed a 

simulation study to evaluate bias in MLE mean estimate of the mean of a gamma distribution for various 

values of the shape parameter, k and sample size, n. It is noted that for smaller values of k (e.g., <0.2), the 

bias in the mean estimate (in absolute value)  and mean square error (MSE) based upon the biased 

corrected MLE estimate,
*Ĕk  are higher than those computed using the MLE estimate, Ĕk ; and for higher 

values of k (e.g., >0.2), the bias in the mean estimate and MSE computed using the biased corrected MLE 

estimate, 
*Ĕk  are lower  than those computed using the MLE estimate, Ĕk . For values of k around 0.2, the 

use of 
*Ĕk  and Ĕk  yields comparable results for all values of the sample size. The bias in mean estimate 

obtained using the MLE estimate, Ĕk  increases as k increases, and as expected bias and MSE decrease as 

the sample size increases. The results of this study will be published elsewhere. 

2.4 Methods for Computing a UCL of the Unknown Population Mean   

ProUCL computes a (1 ï Ŭ)*100 UCL of the population mean, µ1, using several parametric and 

nonparametric methods. ProUCL can compute a (1 ï Ŭ)*100 UCL (except for adjusted gamma UCL and 

Landôs H-UCL) of the mean for any user selected confidence coefficient, (1 ï Ŭ) lying in the interval [0.5, 

1.0]. For the computation of the adjusted gamma UCL, three confidence levels, namely: 0.90, 0.95, and 

0.99 are supported by the ProUCL software; an approximate gamma UCL can be computed for any level 

of significance in the interval [0.5, 1.0].  

 

Parametric UCL Computation Methods in ProUCL include: 

¶ Studentôs t-statistic (assumes normality or approximate normality) based UCL,  

¶ Approximate gamma UCL (assumes approximate gamma distribution),  

¶ Adjusted gamma UCL (assumes approximate gamma distribution),  

¶ Landôs H-Statistic UCL (assumes lognormality), and 

¶ Chebyshev inequality based UCL: Chebyshev (MVUE) UCL obtained using MVUE of the 

parameters (assumes lognormality). 

 

Nonparametric UCL Computation Methods in ProUCL include:  

¶ Modified-t-statistic (modified for skewness) UCL,  

¶ Central Limit Theorem (CLT) UCL to be used for large samples,  

¶ Adjusted Central Limit Theorem UCL: adjusted-CLT UCL (adjusted for skewness), 

¶ Chebyshev UCL: Chebyshev (Mean, sd) obtained using classical sample mean and standard 

deviation,  

¶ Jackknife UCL (yields the same result as Studentôs t-statistic UCL), 

¶ Standard bootstrap UCL,  

¶ Percentile bootstrap UCL, 

¶ BCA bootstrap UCL, 

¶ Bootstrap-t UCL, and   

¶ Hallôs bootstrap UCL.  
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For skewed data sets, Modified-t and adjusted CLT methods adjust for skewness. However, it is noted 

that (Singh, Singh, and Iaci, 2002) this adjustment is not adequate for moderately skewed to highly 

skewed data sets (levels of skewness described in Table 2-1).  

 

Even though some UCL methods (e.g., CLT, UCL based upon Jackknife method, standard bootstrap, and 

percentile bootstrap methods) do not perform well enough to provide the specified coverage to the 

population mean of skewed distributions, these methods have been included in ProUCL for comparison, 

academic, and research purposes. Additionally, the inclusion of these methods also helps the user to make 

correct decisions. Based upon the 1) sample size, n, 2) data skewness, Ĕs, 3) and data distribution, 

ProUCL makes suggestions about using one or more 95% UCL methods to estimate the EPC term. These 

suggestions are based upon the simulation results summarized in Singh, Singh, and Iaci (2002), Singh and 

Singh (2003) and professional experience of the developers of ProUCL software.  When in doubt, the 

users may want to consult a statistician to select the most appropriate UCL95 to estimate an EPC term. 

 

It is noted that in the environmental literature, recommendations about the use of UCLs have been made 

without accounting for the skewness and sample size of the data set. Specifically, Helsel (2005, 2012) 

suggests the use t-statistic and percentile bootstrap method on robust regression on order statistics (ROS) 

and KM estimates to compute UCL95 without considering data skewness and sample size. For 

moderately skewed to highly skewed data sets, the use of such UCLs underestimates the population mean. 

These issues are illustrated by examples discussed in the following sections and also in Chapters 4 and 5. 

2.4.1 (1 ï Ŭ)*100 UCL of the Mean Based upon Studentôs t-Statistic 

The widely used Studentôs t-statistic is given by: 

 

                                                                    
ns

ɛx
t

x /

1-
=  (2-31) 

Where x and sx are, respectively, the sample mean and sample standard deviation obtained using the raw 

data. For normally distributed data sets, the test statistic given by equation (2-31) follows Studentôs t-

distribution with (n -1) df. Let tŬ,n-1 be the upper Ŭ
th
 quantile of the Studentôs t-distribution with (n -1) df. 

 

A (1 ï Ŭ)*100 UCL of the population mean, ɛ1, is given by: 

 

                                                           UCL = nstx xnŬ /1, -+  (2-32) 

 

For a normally (when the skewness is about ~0) distributed data sets, equation (2-32) provides the best 

(optimal) way of computing a UCL of the mean. Equation (2-32) may also be used to compute a UCL of 

the mean based upon symmetric or mildly skewed (e.g., |skewness|<0.5) data sets, where the skewness is 

defined in Table 2-1. Even for mildly to moderately skewed data sets (e.g., whenĔs, the sd of log-

transformed data, starts approaching and exceeding 0.5), the UCL given by (2-32) fails to provide the 

desired coverage (e.g., = 0.95) to the population mean. This is especially true when the sample size is 

smaller than 20-25 (Singh and Singh, (2003). The situation gets worse (coverage much smaller than 0.95) 

for higher values of the sd, Ĕs, or its MLE, sy. 

 

Notes:  To streamline the decision process used to compute upper limits (e.g., UCL95), ProUCL 5.0 

makes a decision about the data distribution based upon  both of the GOF test statistics: Lilliefors and 

Shapiro-Wilk GOF statistics for normal and lognormal distributions; and A-D and K-S GOF test statistics 
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for gamma distribution. Specifically, when only one of the two GOF statistic lead to the conclusion that 

data are normal (lognormal or gamma),  ProUCL outputs the conclusion that the data set follows an 

approximate normal (lognormal, gamma) distribution; all decision statistics (parametric or nonparametric) 

are computed  based upon this conclusion.  

2.4.2 Computation of the UCL of the Mean of a Gamma, G (k, ɗ), Distribution 

It is well-known that the use of a lognormal distribution often yields unstable and unrealistic values of the 

decision statistics including UCLs and UTLs for moderately skewed to highly skewed lognormally 

distributed data sets; especially when the data set is of a small size (e.g., <30, 50,...). Even though 

methods exist to compute 95% UCL of the mean and UPLs and UTLs based upon gamma distributed data 

sets (e.g., Grice and Bain, 1980; Wong, 1993; Krishnamoorthy et al., 2008), those methods have not 

become popular due to their computational complexity and/or the lack of their availability in commercial 

software packages (e.g., Minitab 16). Despite the better performance (in terms of coverage and stability) 

of the decision making statistics based upon a gamma distribution, some practitioners tend to dismiss the 

use of gamma distribution based decision statistics by not acknowledging them (e.g., EPA, 2009; Helsel, 

2012) and/or stating that the use of a lognormal distribution is easier  to compute the various upper limits. 

Throughout this document, several examples have been used to illustrate these issues.  

 

For gamma distributions, ProUCL software has both approximate (used for n>50) and adjusted (when 

nÒ50) UCL computation methods.  Critical values of the chi-square distribution and an estimate of the 

gamma shape parameter, k along with the sample mean are used to compute gamma UCLs.  As seen 

above, computation of an MLE of k is quite involved, and this works as a deterrent to the use of a gamma 

distribution-based UCL of the mean. However, the computation of a gamma UCL currently should not be 

a problem due to the easy availability of statistical software to compute these estimates. It is noted that 

some of the gamma distribution based methods incorporated in ProUCL (e.g., prediction limits, tolerance 

limits) are also available in the R Script library. 

 

Update in ProUCL 5.0: For  gamma distributed data sets, all versions of ProUCL compute both adjusted 

and approximate gamma UCLs. However, in earlier versions of ProUCL, an adjusted gamma UCL was 

recommended for data sets of sizes Ò40 (instead of 50 as in ProUCL 5.0), and an approximate gamma 

UCL was recommended for data sets of sizes>40, whereas ProUCL 5.0 suggests using approximate 

gamma UCL for sample sizes >50.  

 

Given a random sample, x1, x2, ... , xn , of size n from a gamma, G(k, ɗ), distribution, it can be shown that 

q/2 xn follows a chi-square distribution, 2

2nkɢ , with 2nk df. When the shape parameter, k, is known, a 

uniformly most powerful test of size of the null hypothesis, H0: ɛ1 Ó Cs, against the alternative hypothesis, 

HA: ɛ1 < Cs, is to reject H0 if nkŬɢCx nks 2)(/ 2

2< . The corresponding (1 ï Ŭ) 100% uniformly most 

accurate UCL for the mean, ɛ1, is then given by the probability statement. 

 

                                                     ŬɛŬɢxnkP nk -=² 1))(2( 1

2

2
  (2-33)  

 

Where, 2( )uc adenotes the cumulative percentage point of the chi-square distribution (e.g., Ŭ is the area 

in the left tail). That is, if Y follows 2

ɡɢ, then ŬŬɢYP ɡ =¢ ))(( 2 . In practice, k is not known and needs to 

be estimated from data. A reasonable method is to replace k by its bias-corrected estimate,
*Ĕk , as given by 

equation (2-29). This yields the following approximate (1 ï Ŭ)*100 UCL of the mean, ɛ1. 
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                                         Approximate ï UCL = )(Ĕ2 2
Ĕ2

*
* Ŭɢxkn

kn
 (2-34) 

  

It should be pointed out that the UCL given by equation (2-34) is an approximate UCL without guarantee 

that the confidence level of (1 ï Ŭ) will be achieved by this UCL. Simulation studies conducted in Singh, 

Singh, and Iaci (2002) and in Singh and Singh (2003) suggest that an approximate gamma UCL given by 

(2-34) does provide the specified coverage (95%) for values of k > 0.5. Therefore for values of k>  0.5, 

one should use the approximate gamma UCL given by equation (2-34) to estimate the EPC term.  

 

For smaller sample sizes, Grice and Bain (1980) computed an adjusted probability level, ɓ (adjusted level 

of significance), which can be used in (2-34) to achieve the specified confidence level of (1 ï Ŭ). For Ŭ = 

0.05 (confidence coefficient of 0.95), Ŭ = 0.1, and Ŭ = 0.01, these probability levels are given below in 

Table 2-2 for some values of the sample size n. One can use interpolation to obtain an adjusted ɓ for 

values of n not covered in Table 2-2. The adjusted (1 ï Ŭ)*100 UCL of the gamma mean, ɛ1 = kɗ, is given 

by the following equation:  

 

                                              Adjusted ï UCL = )(Ĕ2 2
Ĕ2

*
* ɓɢxkn

kn
 (2-35) 

 

Where ɓ is given in 2-2 for Ŭ = 0.05, 0.1, and 0.01. Note that as the sample size, n, becomes large, the 

adjusted probability level, ɓ, approaches the specified level of significance, Ŭ. Except for the computation 

of the MLE of k, equations (2-34) and (2-35) provide simple chi-square-distribution-based UCLs of the 

mean of a gamma distribution. It should also be noted that the UCLs given by (2-34) and (2-35) only 

depend upon the estimate of the shape parameter, k, and are independent of the scale parameter, ɗ, and its 

ML estimate. Consequently, coverage probabilities for the mean associated with these UCLs do not 

depend upon the values of the scale parameter, ɗ.  

 

  Table 2-2. Adjusted Level of Significance, ɓ 

 

 

N 

Ŭ = 0.05 

probability level, ɓ 

Ŭ = 0.1 

probability level, ɓ 

Ŭ = 0.01 

probability level, ɓ 

5 0.0086 0.0432 0.0000 

10 0.0267 0.0724 0.0015 

20 0.0380 0.0866 0.0046 

40 0.0440 0.0934 0.0070 

-- 0.0500 0.1000 0.0100 

    

For gamma distributed data sets, Singh, Singh, and Iaci (2002) noted that the coverage probabilities 

provided by the 95% UCLs based upon bootstrap-t and Hallôs bootstrap methods (discussed below) are in 

close agreement. For larger samples, these two bootstrap methods approximately provide the specified 

95% coverage and for smaller data sets (from a gamma distribution), the coverage provided by these two 

methods is slightly lower than the specified level of 0.95.  

 

Notes: Gamma UCLs do not depend upon the standard deviation of the data set which gets distorted by 

the presence of outliers. Thus, unlike the lognormal distribution, outliers have reduced influence on the 

computation of the gamma distribution based upon decision statistics including the UCL of the mean - a 

fact generally not known to a typical user.  

 



54 

For all gamma distributed data sets for all values of k and n, all versions of ProUCL  compute the various 

upper limits based upon the mean and standard deviation obtained using the bias-corrected estimate,  
*Ĕk . 

As noted earlier, the estimate 
*Ĕk  does  yield better estimates (reduced bias) for all values of k >0.2.  For 

values of k <0.2, the differences between the various limits  obtained using kĔ and
*Ĕk  are not that 

significant. However from theoretical point of view, when  k<0.2, it is desirable to compute the mean, 

standard deviation, and the various upper limits using the MLE estimate, kĔ 
 

2.4.3 (1 ï Ŭ)*100 UCL of the Mean Based Upon H-Statistic (H-UCL) 

The one-sided (1 ï Ŭ)*100 UCL for the mean, ɛ1, of a lognormal distribution as derived by Land (1971, 

1975) is given as follows: 

 

                                                UCL = ( )15.0exp 1

2 -++ - nHssy Ŭyy   (2-36) 

 

Tables of H-statistic critical values can be found in Land (1975). Theoretically, when the population is 

lognormal, Land (1971) showed that the UCL given by equation (2-36) possesses optimal properties and 

is the uniformly most accurate unbiased confidence limit. However, in practice, the H-statistic based UCL 

can be quite disappointing and misleading, especially when the data set is skewed and/or consists of 

outliers, or represents a mixture data set coming from two or more populations (Singh, Singh, and 

Engelhardt, [1997, 1999]; Singh, Singh, and Iaci, 2002). Even a minor increase in the sd, sy, drastically 

inflates the MVUE of ɛ1 and the associated H-UCL. The presence of low as well as high data values 

increases the sd, sy, which in turn inflates the H-UCL. Furthermore, it is observed (Singh, Singh, 

Engelhardt 1997, 1999) that for samples of sizes smaller than 20-30 (sample size requirement also 

depends upon skewness), and for values of ů approaching and exceeding 1.0 (e.g., moderately skewed to 

highly skewed data), the use of the H-statistic results in impractical and unacceptably large UCL values.  

 

Notes: In practice, many skewed data sets can be modeled by both gamma and lognormal distributions; 

however there are differences in the properties and behavior of these two distributions. Decision statistics 

computed using the two distributions can differ significantly (e.g., Example 2-2 below). It is noted that 

some recent documents (e.g., Helsel and Gilroy, 2012) incorrectly state that the two distributions are 

similar. Helsel (2012, 2012a) likes to use a lognormal distribution due its computational ease. However, 

one should not compromise the accuracy and defensibility of estimates and decision statistics by using 

easier methods which may underestimate (e.g., using a percentile bootstrap UCL based upon a skewed 

data set) or overestimate (e.g., H-UCL) the population mean. It is recommended to compute correct and 

defensible estimates and decision statistics taking the sample size and data skewness into consideration. 

For complicated and skewed data sets, several UCL computation methods (e.g., bootstrap-t, Chebyshev 

inequality, and Gamma UCL) are available in ProUCL to compute correct decision statistics (UCLs, 

UTLs) covering a wide-range of data skewness and sample sizes.  

 

For lognormally distributed data sets, the coverage provided by the bootstrap-t 95% UCL is a little lower 

than the coverage provided by the 95% UCL based upon Hallôs bootstrap method (Singh and Singh, 

2003). However, it is noted that for lognormally distributed data sets, the coverage provided by these two 

bootstrap methods is significantly lower than the specified 0.95 coverage for samples of all sizes. This is 

especially true for moderately skewed to highly skewed (e.g., ů >1.0) lognormally distributed data sets. 

For such data sets, a Chebyshev inequality based UCL can be used to estimate the population mean. H-

statistic often results in unstable values of UCL95 as shown in Examples 2-1 through 2-3.  
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Example 2-1. Consider the silver data set of size 56 (from NADA for R package [Helsel, 2013]). The 

normal GOF test graph is shown in Figure 2-1, it is noted that data set has an extreme outlier (an 

observation significantly different from the main body of the data set). The data set consists of NDs, and 

therefore is considered in Chapter 4 and 5 again. Here this data set is considered assuming that all 

observations represent detected values. The data set does not follow a gamma distribution (Figure 2-3) but 

can be modeled by a lognormal distribution as shown in Figure 2-2 accommodating the outlier 560. The 

histogram shown in Figure 2-4 suggests that data are highly skewed. The sd of logged data = 1.74. The 

various UCLs computed using ProUCL 5.0 are displayed in Table 2-3 (with outlier) and Table 2-4 

(without outlier) following the Q-Q plots. 

 

 
Figure 2-1. Normal Q-Q Plot of Raw Data in Original Scale 

 

 
Figure 2-2. Lognormal Q-Q plot with GOF Test Statistics 
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Figure 2-3. Gamma Q-Q plot with GOF Test Statistics 

 

 
Figure 2-4. Histogram of Silver Data Set including outlier 560 
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Table2-3. Lognormal and Nonparamertic UCLs for Silver Data including the outlier 560. 

 

 

 
 

The sample mean is 15.45 and all lognormal distribution based UCL95s (e.g., H-UCL=18.54) are 

unrealistically low. In this case, the use of a lognormal distribution appears to underestimate the EPC 

term. The BCA bootstrap UCL95 is 52.45 and other nonparametric UCLs (e.g., percentile bootstrap UCL, 

Student's t-UCL) range from 31.98 to 35.5. If one insists that the outlier 560 represents a valid 

observation and comes from the same population, one may want to use a nonparametric Chebyshev 

UCL95 (Table 2-11) or BCA UCL95 to estimate the EPC term.  

 

Histogram without the outlier is shown in Figure 2-5, the data is positively skewed with skewness = 5.45. 

UCLs based upon the data set without the outlier are summarized in Table 2-4 as follows. A quick 

comparison of the results presented in Tables 2-3 and 2-4 reveals how the presence of an outlier distorts 

the various decision making statistics.   
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Figure 2-5. Histogram of Silver Data Set including outlier 560 

 

Example 2-2: The positively skewed data set consisting of 25 observations, with values ranging from 

0.35 to 170, follows a lognormal as well as a gamma distribution. The data set is: 0.3489, 0.8526, 2.5445, 

2.5602, 3.3706, 4.8911, 5.0930, 5.6408, 7.0407, 14.1715, 15.2608, 17.6214, 18.7690, 23.6804, 25.0461, 

31.7720, 60.7066, 67.0926, 72.6243, 78.8357, 80.0867, 113.0230, 117.0360, 164.3302, and 169.8303. 

 

The mean of the data set is 44.09. The data set is positively skewed with sd of log-transformed data = 

1.68.  The normal GOF results are shown in the Q-Q plot of Figure 2-6, it is noted that the data do not 

follow a normal distribution.  The data set follows a lognormal as well as a gamma distribution as shown 

in Figures 2-6a and 2-6b and also in Tables 2-5 and 2-6. The various lognormal and nonparametric 

UCL95s (Table 2-5) and Gamma UCL95s (Table 2-6) are summarized in the following.  

 

¶ The lognormal distribution based UCL95 is 229.2 which is unacceptably higher than all other UCLs 

and an order of magnitude higher than the sample mean of 44.09. A more reasonable Gamma 

distribution based UCL95 of the mean is 74.27 (recommended by ProUCL). 

 

¶ The data set is highly skewed (Figure 2-6) with sd of the log-transformed data = 1.68; a Student's t-

UCL of 61.66 and a nonparametric percentile bootstrap UCL95 of 60.32 may represent 

underestimates of the population mean. 

 

¶ The intent of the ProUCL software is to provide users with methods which can be used to compute 

correct decision statistics needed to make decisions which are cost-effective and protective of human 

health and the environment.  
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Table 2-4. Lognormal and Nonparamertic UCLs Not Including the Outlier Observation 560. 

 

 
 

 



60 

 
Figure 2-6. Normal Q-Q Plot of X 

 

 
Figure 2-6a. Gamma Q-Q Plot of X 
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Figure 2-6b. Lognormal Q-Q Plot of X 

 

Table 2-5. Nonparametric and Lognormal UCL95 
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Table 2-6. Gamma UCL95 

 

 
 

Notes: The use of H-UCL is not recommended for moderately skewed to highly skewed data sets of 

smaller sizes (e.g., 30, 50, 70,...); ProUCL computes and outputs H-statistic based UCLs for historical and 

academic reasons. This example further illustrates that there are significant differences between a 

lognormal and a gamma model; for positively skewed data sets, it is recommended to test for a gamma 

model first. If data follow a gamma distribution, then the UCL of the mean should be computed using a 

gamma distribution. The use of nonparametric methods is preferred to compute UCL95 for skewed data 

sets which do not follow a gamma distribution.  

 

2.4.4 (1 ï Ŭ)*100 UCL of the Mean Based Upon Modified-t-Statistic for Asymmetrical 

Populations 

It is well known that percentile bootstrap, standard bootstrap, and Studentôs t-statistic based UCL of the 

mean do not provide the desired coverage of a population mean (e.g., Johnson 1978, Sutton 1993, Chen 

1995, Efron and Tibshirani, 1993) of skewed data distributions. Several researchers including: Chen 

(1995), Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutton (1993) suggested the 

use of the modified-t-statistic and skewness adjusted CLT for testing the mean of a positively skewed 

distribution.  The UCLs based upon the modified t-statistic and adjusted CLT methods were included in 

earlier versions of ProUCL (e.g., versions 1.0 and 2.0) for research and comparison purposes prior to the 

availability of Gamma distribution based UCLs in ProUCL 3.0 (2004). Singh, Singh, and Iaci (2002) 

noted that these two skewness adjusted UCL computation methods work only for mildly skewed 

distributions. These methods have been retained in later versions of ProUCL for academic reasons.  The 

(1 ï Ŭ)*100 UCL of the mean based upon a modified t-statistic is given by: 

  






















































































































































































































































































































































































































